614 research outputs found
Interaction region local correction for the Large Hadron Collider
The performance of the Large Hadron Collider (LHC) at collision energy is limited by the field quality of the interaction region (IR) quadrupoles and dipoles. In this paper we study the impact of the expected field errors of these magnets on the dynamic aperture (DA). Since the betatron phase advance is well defined for magnets that are located in regions of large beta functions, local corrections can be very effective and robust. We compare possible compensation schemes and propose a corrector layout to meet the required DA performance. (7 refs)
Stability of 1-D Excitons in Carbon Nanotubes under High Laser Excitations
Through ultrafast pump-probe spectroscopy with intense pump pulses and a wide
continuum probe, we show that interband exciton peaks in single-walled carbon
nanotubes (SWNTs) are extremely stable under high laser excitations. Estimates
of the initial densities of excitons from the excitation conditions, combined
with recent theoretical calculations of exciton Bohr radii for SWNTs, suggest
that their positions do not change at all even near the Mott density. In
addition, we found that the presence of lowest-subband excitons broadens all
absorption peaks, including those in the second-subband range, which provides a
consistent explanation for the complex spectral dependence of pump-probe
signals reported for SWNTs.Comment: 4 pages, 4 figure
Design and Fabrication of a 1 m Model of the 70 mm Bore Twin Aperture Superconducting Quadrupole for the LHC Insertions
For reasons of geometrical acceptance, 70 mm bore twin aperture quadrupoles are required in the LHC insertions. For an operating gradient of 160 T/m at 4.5 K, a design based on a four layer coil wound from two graded 8.2 mm NbTi conductors has been developed. Three 1 m single aperture quadrupoles of this design have been built and successfully tested. Thereafter, the magnets have been disassembled and the coils re-collared using self-supporting collars. In this paper, we describe the design features of the twin aperture quadrupole, and report on the initial collaring tests and procedures for collaring and final assembly of the 1 m magnet
Design and construction of a 1 m model of the low current superconducting quadrupole for the LHC insertions
About one hundred individually powered low current superconducting quadrupoles will be installed in the LHC insertions. One of the design requirements was to keep the excitation current of the magnet below 6 kA in view of minimizing the costs of the powering circuits. The design of the quadrupole is based on a 8.2 mm NbTi cable, and is designed for a nominal gradient of 200 T/m at 1.9 K. In this paper we present the design of the quadrupole and discuss the construction details of the 1 m single aperture model which has been recently completed
Scale invariance and universality of force networks in static granular matter
Force networks form the skeleton of static granular matter. They are the key
ingredient to mechanical properties, such as stability, elasticity and sound
transmission, which are of utmost importance for civil engineering and
industrial processing. Previous studies have focused on the global structure of
external forces (the boundary condition), and on the probability distribution
of individual contact forces. The disordered spatial structure of the force
network, however, has remained elusive so far. Here we report evidence for
scale invariance of clusters of particles that interact via relatively strong
forces. We analyzed granular packings generated by molecular dynamics
simulations mimicking real granular matter; despite the visual variation, force
networks for various values of the confining pressure and other parameters have
identical scaling exponents and scaling function, and thus determine a
universality class. Remarkably, the flat ensemble of force configurations--a
simple generalization of equilibrium statistical mechanics--belongs to the same
universality class, while some widely studied simplified models do not.Comment: 15 pages, 4 figures; to appear in Natur
Potential for neutrino and radioactive beam physics of the foreseen upgrades of the CERN accelerators
The integrated luminosity in the LHC experiments will directly depend upon the reliability and the level of performance of the injectors (Linac2, PSB, PS, SPS). The working group on "Proton Accelerators for the Future" which is in charge of elaborating a baseline scenario for the upgrade of these accelerators in close collaboration with the group looking after "Physics Opportunities with Future Proton Accelerators" has published its views for maximizing the LHC performance in a first document. The present report updates the information concerning the proposed future accelerators and highlights their interest for a possible neutrino facility at CERN as well as for a next generation ISOL-type radioactive ion beam facility ("EURISOL")
An Acoustic Emission Evaluation of Environmentally Assisted Cracking of 7039-T6 Aluminum
Environmentally assisted cracking (EAC) is a significant problem in modern structures. The combination of a susceptible material, an adverse environment and mechanical stress can lead to unexpected failure of a structure by catastrophic crack growth. The mid-air failure of the aluminum alloy bulkhead and the subsequent loss of life on a Aloha Airlines flight on April 28, 1988 as shown in figure 1, illustrates this fact. Additionally, the operating environment of the US Army contributes to premature failure of structures such as aluminum alloy armor, high strength steel armor and high strength steel control components on Army helicopters [1]. These failures not only endanger life but they also seriously hamper the fighting readiness of U.S. forces because of equipment down time for inspection and repair of faulty components. Work has been performed to better characterize EAC resistance in high strength aluminum armor alloys [2]. These high strength alloys are particularly prone to failure in a chloride environment, an environment encountered in most of the world. If we plan to avoid such failures, we must better understand the EAC phenomena and more diligently detect growing cracks before they become critical in length. One characterization technique that promises to serve well both as a laboratory tool for understanding EAC and as a field device for detecting EAC is acoustic emission evaluation
Response of a Hexagonal Granular Packing under a Localized External Force: Exact Results
We study the response of a two-dimensional hexagonal packing of massless,
rigid, frictionless spherical grains due to a vertically downward point force
on a single grain at the top layer. We use a statistical approach, where each
mechanically stable configuration of contact forces is equally likely. We show
that this problem is equivalent to a correlated -model. We find that the
response is double-peaked, where the two peaks, sharp and single-grain diameter
wide, lie on the two downward lattice directions emanating from the point of
the application of the external force. For systems of finite size, the
magnitude of these peaks decreases towards the bottom of the packing, while
progressively a broader, central maximum appears between the peaks. The
response behaviour displays a remarkable scaling behaviour with system size
: while the response in the bulk of the packing scales as , on
the boundary it is independent of , so that in the thermodynamic limit only
the peaks on the lattice directions persist. This qualitative behaviour is
extremely robust, as demonstrated by our simulation results with different
boundary conditions. We have obtained expressions of the response and higher
correlations for any system size in terms of integers corresponding to an
underlying discrete structure.Comment: Accepted for publication in JStat; 33 pages, 10 figures; Section 2.2
reorganized and rewritten; Details about the simulation procedure added in
Sec.3.1. ; A new section, summarizing the final results and the calculation
procedure adde
Ultrafast Optical Spectroscopy of Micelle-Suspended Single-Walled Carbon Nanotubes
We present results of wavelength-dependent ultrafast pump-probe experiments
on micelle-suspended single-walled carbon nanotubes. The linear absorption and
photoluminescence spectra of the samples show a number of chirality-dependent
peaks, and consequently, the pump-probe results sensitively depend on the
wavelength. In the wavelength range corresponding to the second van Hove
singularities (VHSs), we observe sub-picosecond decays, as has been seen in
previous pump-probe studies. We ascribe these ultrafast decays to intraband
carrier relaxation. On the other hand, in the wavelength range corresponding to
the first VHSs, we observe two distinct regimes in ultrafast carrier
relaxation: fast (0.3-1.2 ps) and slow (5-20 ps). The slow component, which has
not been observed previously, is resonantly enhanced whenever the pump photon
energy resonates with an interband absorption peak, and we attribute it to
radiative carrier recombination. Finally, the slow component is dependent on
the pH of the solution, which suggests an important role played by H ions
surrounding the nanotubes.Comment: 6 pages, 8 figures, changed title, revised, to be published in
Applied Physics
- …