614 research outputs found

    Interaction region local correction for the Large Hadron Collider

    Get PDF
    The performance of the Large Hadron Collider (LHC) at collision energy is limited by the field quality of the interaction region (IR) quadrupoles and dipoles. In this paper we study the impact of the expected field errors of these magnets on the dynamic aperture (DA). Since the betatron phase advance is well defined for magnets that are located in regions of large beta functions, local corrections can be very effective and robust. We compare possible compensation schemes and propose a corrector layout to meet the required DA performance. (7 refs)

    Stability of 1-D Excitons in Carbon Nanotubes under High Laser Excitations

    Full text link
    Through ultrafast pump-probe spectroscopy with intense pump pulses and a wide continuum probe, we show that interband exciton peaks in single-walled carbon nanotubes (SWNTs) are extremely stable under high laser excitations. Estimates of the initial densities of excitons from the excitation conditions, combined with recent theoretical calculations of exciton Bohr radii for SWNTs, suggest that their positions do not change at all even near the Mott density. In addition, we found that the presence of lowest-subband excitons broadens all absorption peaks, including those in the second-subband range, which provides a consistent explanation for the complex spectral dependence of pump-probe signals reported for SWNTs.Comment: 4 pages, 4 figure

    Design and Fabrication of a 1 m Model of the 70 mm Bore Twin Aperture Superconducting Quadrupole for the LHC Insertions

    Get PDF
    For reasons of geometrical acceptance, 70 mm bore twin aperture quadrupoles are required in the LHC insertions. For an operating gradient of 160 T/m at 4.5 K, a design based on a four layer coil wound from two graded 8.2 mm NbTi conductors has been developed. Three 1 m single aperture quadrupoles of this design have been built and successfully tested. Thereafter, the magnets have been disassembled and the coils re-collared using self-supporting collars. In this paper, we describe the design features of the twin aperture quadrupole, and report on the initial collaring tests and procedures for collaring and final assembly of the 1 m magnet

    Design and construction of a 1 m model of the low current superconducting quadrupole for the LHC insertions

    Get PDF
    About one hundred individually powered low current superconducting quadrupoles will be installed in the LHC insertions. One of the design requirements was to keep the excitation current of the magnet below 6 kA in view of minimizing the costs of the powering circuits. The design of the quadrupole is based on a 8.2 mm NbTi cable, and is designed for a nominal gradient of 200 T/m at 1.9 K. In this paper we present the design of the quadrupole and discuss the construction details of the 1 m single aperture model which has been recently completed

    Scale invariance and universality of force networks in static granular matter

    Full text link
    Force networks form the skeleton of static granular matter. They are the key ingredient to mechanical properties, such as stability, elasticity and sound transmission, which are of utmost importance for civil engineering and industrial processing. Previous studies have focused on the global structure of external forces (the boundary condition), and on the probability distribution of individual contact forces. The disordered spatial structure of the force network, however, has remained elusive so far. Here we report evidence for scale invariance of clusters of particles that interact via relatively strong forces. We analyzed granular packings generated by molecular dynamics simulations mimicking real granular matter; despite the visual variation, force networks for various values of the confining pressure and other parameters have identical scaling exponents and scaling function, and thus determine a universality class. Remarkably, the flat ensemble of force configurations--a simple generalization of equilibrium statistical mechanics--belongs to the same universality class, while some widely studied simplified models do not.Comment: 15 pages, 4 figures; to appear in Natur

    Potential for neutrino and radioactive beam physics of the foreseen upgrades of the CERN accelerators

    Get PDF
    The integrated luminosity in the LHC experiments will directly depend upon the reliability and the level of performance of the injectors (Linac2, PSB, PS, SPS). The working group on "Proton Accelerators for the Future" which is in charge of elaborating a baseline scenario for the upgrade of these accelerators in close collaboration with the group looking after "Physics Opportunities with Future Proton Accelerators" has published its views for maximizing the LHC performance in a first document. The present report updates the information concerning the proposed future accelerators and highlights their interest for a possible neutrino facility at CERN as well as for a next generation ISOL-type radioactive ion beam facility ("EURISOL")

    An Acoustic Emission Evaluation of Environmentally Assisted Cracking of 7039-T6 Aluminum

    Get PDF
    Environmentally assisted cracking (EAC) is a significant problem in modern structures. The combination of a susceptible material, an adverse environment and mechanical stress can lead to unexpected failure of a structure by catastrophic crack growth. The mid-air failure of the aluminum alloy bulkhead and the subsequent loss of life on a Aloha Airlines flight on April 28, 1988 as shown in figure 1, illustrates this fact. Additionally, the operating environment of the US Army contributes to premature failure of structures such as aluminum alloy armor, high strength steel armor and high strength steel control components on Army helicopters [1]. These failures not only endanger life but they also seriously hamper the fighting readiness of U.S. forces because of equipment down time for inspection and repair of faulty components. Work has been performed to better characterize EAC resistance in high strength aluminum armor alloys [2]. These high strength alloys are particularly prone to failure in a chloride environment, an environment encountered in most of the world. If we plan to avoid such failures, we must better understand the EAC phenomena and more diligently detect growing cracks before they become critical in length. One characterization technique that promises to serve well both as a laboratory tool for understanding EAC and as a field device for detecting EAC is acoustic emission evaluation

    Response of a Hexagonal Granular Packing under a Localized External Force: Exact Results

    Full text link
    We study the response of a two-dimensional hexagonal packing of massless, rigid, frictionless spherical grains due to a vertically downward point force on a single grain at the top layer. We use a statistical approach, where each mechanically stable configuration of contact forces is equally likely. We show that this problem is equivalent to a correlated qq-model. We find that the response is double-peaked, where the two peaks, sharp and single-grain diameter wide, lie on the two downward lattice directions emanating from the point of the application of the external force. For systems of finite size, the magnitude of these peaks decreases towards the bottom of the packing, while progressively a broader, central maximum appears between the peaks. The response behaviour displays a remarkable scaling behaviour with system size NN: while the response in the bulk of the packing scales as 1N\frac{1}{N}, on the boundary it is independent of NN, so that in the thermodynamic limit only the peaks on the lattice directions persist. This qualitative behaviour is extremely robust, as demonstrated by our simulation results with different boundary conditions. We have obtained expressions of the response and higher correlations for any system size in terms of integers corresponding to an underlying discrete structure.Comment: Accepted for publication in JStat; 33 pages, 10 figures; Section 2.2 reorganized and rewritten; Details about the simulation procedure added in Sec.3.1. ; A new section, summarizing the final results and the calculation procedure adde

    Ultrafast Optical Spectroscopy of Micelle-Suspended Single-Walled Carbon Nanotubes

    Full text link
    We present results of wavelength-dependent ultrafast pump-probe experiments on micelle-suspended single-walled carbon nanotubes. The linear absorption and photoluminescence spectra of the samples show a number of chirality-dependent peaks, and consequently, the pump-probe results sensitively depend on the wavelength. In the wavelength range corresponding to the second van Hove singularities (VHSs), we observe sub-picosecond decays, as has been seen in previous pump-probe studies. We ascribe these ultrafast decays to intraband carrier relaxation. On the other hand, in the wavelength range corresponding to the first VHSs, we observe two distinct regimes in ultrafast carrier relaxation: fast (0.3-1.2 ps) and slow (5-20 ps). The slow component, which has not been observed previously, is resonantly enhanced whenever the pump photon energy resonates with an interband absorption peak, and we attribute it to radiative carrier recombination. Finally, the slow component is dependent on the pH of the solution, which suggests an important role played by H+^+ ions surrounding the nanotubes.Comment: 6 pages, 8 figures, changed title, revised, to be published in Applied Physics
    • …
    corecore