36 research outputs found

    X-ray Structure of Gelatinase A Catalytic Domain Complexed with a Hydroxamate Inhibitor

    Get PDF
    Gelatinase A is a key enzyme in the family of matrix metalloproteinases (matrixins) that are involved in the degradation of the extracellular matrix. As this process is an integral part of tumour cell metastasis and angiogenesis, gelatinase is an important target for therapeutic intervention. The X-ray crystal structure of the gelatinase A catalytic domain (GaCD) complexed with batimastat (BB94), a hydroxamate inhibitor, shows an active site with a large S1\u27 specificity pocket. The structure is similar to previously solved structures of stromelysin catalytic domain (SCD) but with differences in VR1 and VR2, two surface-exposed loops on either side of the entrance to the active site. Comparison of GaCD with other members of the matrix metalloproteinase (MMP) family highlights the conservation of key secondary structural elements and the significant differences in the specificity pockets, knowledge of which should enhance our ability to design specific inhibitors for this important anticancer target

    A Multicenter Evaluation of Vancomycin-Associated Acute Kidney Injury in Hospitalized Patients with Acute Bacterial Skin and Skin Structure Infections

    Get PDF
    BACKGROUND: We sought to determine the real-world incidence of and risk factors for vancomycin-associated acute kidney injury (V-AKI) in hospitalized adults with acute bacterial skin and skin structure infections (ABSSSI). METHODS: Retrospective, observational, cohort study at ten U.S. medical centers between 2015 and 2019. Hospitalized patients treated with vancomycin (≥ 72 h) for ABSSSI and ≥ one baseline AKI risk factor were eligible. Patients with end-stage kidney disease, on renal replacement therapy or AKI at baseline, were excluded. The primary outcome was V-AKI by the vancomycin guidelines criteria. RESULTS: In total, 415 patients were included. V-AKI occurred in 39 (9.4%) patients. Independent risk factors for V-AKI were: chronic alcohol abuse (aOR 4.710, 95% CI 1.929-11.499), no medical insurance (aOR 3.451, 95% CI 1.310-9.090), ICU residence (aOR 4.398, 95% CI 1.676-11.541), Gram-negative coverage (aOR 2.926, 95% CI 1.158-7.392) and vancomycin duration (aOR 1.143, 95% CI 1.037-1.260). Based on infection severity and comorbidities, 34.7% of patients were candidates for oral antibiotics at baseline and 39.3% had non-purulent cellulitis which could have been more appropriately treated with a beta-lactam. Patients with V-AKI had significantly longer hospital lengths of stay (9 vs. 6 days, p = 0.001), higher 30-day readmission rates (30.8 vs. 9.0%, p \u3c 0.001) and increased all-cause 30-day mortality (5.1 vs. 0.3%, p = 0.024) CONCLUSIONS: V-AKI occurred in approximately one in ten ABSSSI patients and may be largely prevented by preferential use of oral antibiotics whenever possible, using beta-lactams for non-purulent cellulitis and limiting durations of vancomycin therapy

    Real-world, Multicenter Experience With Meropenem-Vaborbactam for Gram-Negative Bacterial Infections Including Carbapenem-Resistant Enterobacterales and Pseudomonas Aeruginosa

    Get PDF
    Background: We aimed to describe the clinical characteristics and outcomes of patients treated with meropenem-vaborbactam (MEV) for a variety of gram-negative infections (GNIs), primarily including carbapenem-resistant Enterobacterales (CRE). Methods: This is a real-world, multicenter, retrospective cohort within the United States between 2017 and 2020. Adult patients who received MEV for ≥72 hours were eligible for inclusion. The primary outcome was 30-day mortality. Classification and regression tree analysis (CART) was used to identify the time breakpoint (BP) that delineated the risk of negative clinical outcomes (NCOs) and was examined by multivariable logistic regression analysis (MLR). Results: Overall, 126 patients were evaluated from 13 medical centers in 10 states. The most common infection sources were respiratory tract (38.1%) and intra-abdominal (19.0%) origin, while the most common isolated pathogens were CRE (78.6%). Thirty-day mortality and recurrence occurred in 18.3% and 11.9%, respectively. Adverse events occurred in 4 patients: nephrotoxicity (n = 2), hepatoxicity (n = 1), and rash (n = 1). CART-BP between early and delayed treatment was 48 hours (P = .04). MEV initiation within 48 hours was independently associated with reduced NCO following analysis by MLR (adusted odds ratio, 0.277; 95% CI, 0.081-0.941). Conclusions: Our results support current evidence establishing positive clinical and safety outcomes of MEV in GNIs, including CRE. We suggest that delaying appropriate therapy for CRE significantly increases the risk of NCOs

    The Role of Antimicrobial Stewardship Programs to Optimize Antibiotics Use in the Surgical Departments

    No full text
    Surgical patients often receive antimicrobial therapy for multiple indications. There is an opportunity to improve antimicrobial prescribing practices in the surgical population by implementing antimicrobial stewardship strategies. Collaboration with the primary surgical team will result in improved antimicrobial prescribing practices and may lead to a decrease in antimicrobial resistance rates

    Cryo-EM reveals an unprecedented binding site for NaV1.7 inhibitors enabling rational design of potent hybrid inhibitors

    No full text
    The voltage-gated sodium (NaV) channel NaV1.7 has been identified as a potential novel analgesic target due to its involvement in human pain syndromes. However, clinically available NaV channel-blocking drugs are not selective among the nine NaV channel subtypes, NaV1.1–NaV1.9. Moreover, the two currently known classes of NaV1.7 subtype-selective inhibitors (aryl- and acylsulfonamides) have undesirable characteristics that may limit their development. To this point understanding of the structure–activity relationships of the acylsulfonamide class of NaV1.7 inhibitors, exemplified by the clinical development candidate GDC-0310, has been based solely on a single co-crystal structure of an arylsulfonamide inhibitor bound to voltage-sensing domain 4 (VSD4). To advance inhibitor design targeting the NaV1.7 channel, we pursued high-resolution ligand-bound NaV1.7-VSD4 structures using cryogenic electron microscopy (cryo-EM). Here, we report that GDC-0310 engages the NaV1.7-VSD4 through an unexpected binding mode orthogonal to the arylsulfonamide inhibitor class binding pose, which identifies a previously unknown ligand binding site in NaV channels. This finding enabled the design of a novel hybrid inhibitor series that bridges the aryl- and acylsulfonamide binding pockets and allows for the generation of molecules with substantially differentiated structures and properties. Overall, our study highlights the power of cryo-EM methods to pursue challenging drug targets using iterative and high-resolution structure-guided inhibitor design. This work also underscores an important role of the membrane bilayer in the optimization of selective NaV channel modulators targeting VSD4
    corecore