961 research outputs found

    NAFLD as a risk factor for HCC: new rules of engagement?

    Get PDF

    REACTIVITY OF CHLOROPHYLL a/b-PROTEINS AND MICELLAR TRITON X-100 COMPLEXES OF CHLOROPHYLLS a OR b WITH BOROHYDRIDE

    Get PDF
    The reaction of several plant chlorophyll-protein complexes with NaBH4 has been studied by absorption spectroscopy. In all the complexes studied, chlorophyll b is more reactive than Chi a, due to preferential reaction of its formyl substituent at C-7. The complexes also show large variations in reactivity towards NaBH4 and the order of reactivity is: LHCI > PSII complex > LHCII > PSI > P700 (investigated as a component of PSI). Differential pools of the same type of chlorophyll have been observed in several complexes. Parallel work was undertaken on the reactivity of micellar complexes of chlorophyll a and of chlorophyll b with NaBH4 to study the effect of aggregation state on this reactivity. In these complexes, both chlorophyll a and b show large variations in reactivity in the order monomer > oligomer > polymer with chlorophyll b generally being more reactive than chlorophyll a. It is concluded that aggregation decreases the reactivity of chlorophylls towards NaBH4 in vitro, and may similarly decrease reactivity in naturally-occurring chlorophyll-protein complexes

    Electrophysiological modeling in generalized epilepsy using surface EEG and anatomical brain structures

    Get PDF
    Deep brain structures involve significantly in the pathology of brain diseases such as epilepsy, Alzheimer, and Parkinson. Physiological brain modeling has become an emerging approach to investigate the coupling dynamics of the brain activity ofthese diseases. We propose a method using the surface EEG signals integrated with the anatomical individual brain to build the electrophysiological model of the epileptic patient’s brain. The EEG-driven model is used to investigate the deep brain activities of 23 patients diagnosed with generalized epilepsy from CHB-MIT Scalp EEG Database. Significant changes in the electrical activities in hippocampus, accumbens, amygdala, provide us insights into the dynamics ofactive brain regions during epilepsy. All of these brain regions show the significant energy variation defined by 5 features (Mean, Max, Min, Standard deviation, Power spectral density) with the p-value < 0.05 in both pre-ictal vs ictal and ictal vs post-ictal. Such result shows the potential of using EEG as a tool to capture the deep brain activity of epilepsy and other diseases that alter deep brain structures. The proposed model may be used to enhance the sensitivity of detecting and predicting epilepsy, detect the progression of the brain lesion, and support the decision-making for a brain medical intervention

    Search for the decay KL0→3γK_L^0 \rightarrow 3\gamma

    Full text link
    We performed a search for the decay KL0→3γK_L^0 \rightarrow 3\gamma with the E391a detector at KEK. In the data accumulated in 2005, no event was observed in the signal region. Based on the assumption of KL0→3γK_L^0 \rightarrow 3\gamma proceeding via parity-violation, we obtained the single event sensitivity to be (3.23±0.14)×10−8(3.23\pm0.14)\times10^{-8}, and set an upper limit on the branching ratio to be 7.4×10−87.4\times10^{-8} at the 90% confidence level. This is a factor of 3.2 improvement compared to the previous results. The results of KL0→3γK_L^0 \rightarrow 3\gamma proceeding via parity-conservation were also presented in this paper
    • …
    corecore