2,036 research outputs found

    Probing the Intergalactic Medium with Fast Radio Bursts

    Get PDF
    The recently discovered fast radio bursts (FRBs), presumably of extra-galactic origin, have the potential to become a powerful probe of the intergalactic medium (IGM). We point out a few such potential applications. We provide expressions for the dispersion measure and rotation measure as a function of redshift, and we discuss the sensitivity of these measures to the HeII reionization and the IGM magnetic field. Finally we calculate the microlensing effect from an isolate, extragalctic stellar-mass compact object on the FRB spectrum. The time delays between the two lensing images will induce constructive and destructive interference, leaving a specific imprint on the spectra of FRBs. With a high all-sky rate, a large statistical sample of FRBs is expected to make these applications feasible.Comment: 4 pages, 1 figure; Typos for the variable x in Eq.6 corrected; Published in ApJ; Originally the Appendix E of arXiv:1402.4766; Separated from the main paper upon the referee's reques

    Wave-Driven Mass Loss in the Last Year of Stellar Evolution: Setting the Stage for the Most Luminous Core-Collapse Supernovae

    Full text link
    During the late stages of stellar evolution in massive stars (C fusion and later), the fusion luminosity in the core of the star exceeds the star's Eddington luminosity. This can drive vigorous convective motions which in turn excite internal gravity waves. The local wave energy flux excited by convection is itself well above Eddington during the last few years in the life of the star. We suggest that an interesting fraction of the energy in gravity waves can, in some cases, convert into sound waves as the gravity waves propagate (tunnel) towards the stellar surface. The subsequent dissipation of the sound waves can unbind up to several M⊙M_\odot of the stellar envelope. This wave-driven mass loss can explain the existence of extremely large stellar mass loss rates just prior to core-collapse, which are inferred via circumstellar interaction in some core-collapse supernovae (e.g., SNe 2006gy and PTF 09uj, and even Type IIn supernovae more generally). An outstanding question is understanding what stellar parameters (mass, rotation, metallicity, age) are the most susceptible to wave-driven mass loss. This depends on the precise internal structure of massive stars and the power-spectrum of internal gravity waves excited by stellar convection.Comment: Version accepted to MNRA

    The Office of the Future: Virtual, Portable, and Global.

    Get PDF
    Virtual reality has the potential to change the way we work. We envision the future office worker to be able to work productively everywhere solely using portable standard input devices and immersive head-mounted displays. Virtual reality has the potential to enable this, by allowing users to create working environments of their choice and by relieving them from physical world limitations, such as constrained space or noisy environments. In this paper, we investigate opportunities and challenges for realizing this vision and discuss implications from recent findings of text entry in virtual reality as a core office task

    Comparing and combining measurement-based and driven-dissipative entanglement stabilization

    Full text link
    We demonstrate and contrast two approaches to the stabilization of qubit entanglement by feedback. Our demonstration is built on a feedback platform consisting of two superconducting qubits coupled to a cavity which are measured by a nearly-quantum-limited measurement chain and controlled by high-speed classical logic circuits. This platform is used to stabilize entanglement by two nominally distinct schemes: a "passive" reservoir engineering method and an "active" correction based on conditional parity measurements. In view of the instrumental roles that these two feedback paradigms play in quantum error-correction and quantum control, we directly compare them on the same experimental setup. Further, we show that a second layer of feedback can be added to each of these schemes, which heralds the presence of a high-fidelity entangled state in realtime. This "nested" feedback brings about a marked entanglement fidelity improvement without sacrificing success probability.Comment: 40 pages, 12 figure

    Far-Ultraviolet to Near-Infrared Spectroscopy of A Nearby Hydrogen Poor Superluminous Supernova Gaia16apd

    Get PDF
    We report the first maximum-light far-Ultraviolet to near-infrared spectra (1000A - 1.62um, rest) of a H-poor superluminous supernova, Gaia16apd. At z=0.1018, it is one of the closest and the UV brightest such events, with 17.4 (AB) magnitude in Swift UV band (1928A) at -11days pre-maximum. Assuming an exponential form, we derived the rise time of 33days and the peak bolometric luminosity of 3x10^{44}ergs^-1. At maximum light, the estimated photospheric temperature and velocity are 17,000K and 14,000kms^-1 respectively. The inferred radiative and kinetic energy are roughly 1x10^{51} and 2x10^{52}erg. Gaia16apd is extremely UV luminous, emitting 50% of its total luminosity at 1000 - 2500A. Compared to the UV spectra (normalized at 3100A) of well studied SN1992A (Ia), SN2011fe(Ia), SN1999em (IIP) and SN1993J (IIb), it has orders of magnitude more far-UV emission. This excess is interpreted primarily as a result of weaker metal line blanketing due to much lower abundance of iron-group elements in the outer ejecta. Because these elements originate either from the natal metallicity of the star, or have been newly produced, our observation provides direct evidence that little of these freshly synthesized material, including 56Ni, was mixed into the outer ejecta, and the progenitor metallicity is likely sub-solar. This disfavors Pair-Instability Supernova (PISN) models with Helium core masses >=90Msun, where substantial 56Ni material is produced. Higher photospheric temperature of Gaia16apd than that of normal SNe may also contribute to the observed far-UV excess. We find some indication that UV luminous SLSNe-I like Gaia16apd could be common. Using the UV spectra, we show that WFIRST could detect SLSNe-I out to redshift of 8.Comment: 19 pages. Match with the version accepted in Ap

    Studies of multiple stellar systems - IV. The triple-lined spectroscopic system Gliese 644

    Get PDF
    We present a radial-velocity study of the triple-lined system Gliese 644 and derive spectroscopic elements for the inner and outer orbits with periods of 2.9655 and 627 days. We also utilize old visual data, as well as modern speckle and adaptive optics observations, to derive a new astrometric solution for the outer orbit. These two orbits together allow us to derive masses for each of the three components in the system: M_A = 0.410 +/- 0.028 (6.9%), M_Ba = 0.336 +/- 0.016 (4.7%), and $M_Bb = 0.304 +/- 0.014 (4.7%) M_solar. We suggest that the relative inclination of the two orbits is very small. Our individual masses and spectroscopic light ratios for the three M stars in the Gliese 644 system provide three points for the mass-luminosity relation near the bottom of the Main Sequence, where the relation is poorly determined. These three points agree well with theoretical models for solar metallicity and an age of 5 Gyr. Our radial velocities for Gliese 643 and vB 8, two common-proper-motion companions of Gliese 644, support the interpretation that all five M stars are moving together in a physically bound group. We discuss possible scenarios for the formation and evolution of this configuration, such as the formation of all five stars in a sequence of fragmentation events leading directly to the hierarchical configuration now observed, versus formation in a small N cluster with subsequent dynamical evolution into the present hierarchical configuration.Comment: 17 pages, 9 figures, Accepted for publication in MNRA

    Spectroscopic Redshifts for Seven Lens Galaxies

    Full text link
    We report VLT observations of 11 lensed quasars, designed to measure the redshifts of their lens galaxies. We successfully determined the redshifts for seven systems, five of which were previously unknown. The securely measured redshifts for the lensing galaxies are: HE0047-1756 z=0.408; PMNJ0134-0931 z=0.766; HE0230-2130 z=0.522; HE0435-1223 z=0.455; SDSS0924+021 z=0.393; LBQS1009-025 z=0.871; and WFIJ2033-472 z=0.658. For four additional systems (BRI0952-0115, Q1017-207, Q1355-2257 and PMNJ1632-003) we estimate tentative redshifts based on some features in their spectra.Comment: 8 pages, ApJ, submitte
    • 

    corecore