4,752 research outputs found

    RXTE confirmation of the intermediate polar status of IGR J15094-6649

    Get PDF
    Aims. To establish the X-ray properties of the intermediate polar candidate IGR J15094-6649 and therefore confirm its inclusion into the class. Methods. 42 856 s of X-ray data from RXTE was analysed. Frequency analysis was used to constrain temporal variations and spectral analysis used to characterise the emission and absorption properties. Results. A spin period of 809.7+-0.6 s is present, revealed as a complex pulse profile whose modulation depth decreases with increasing X-ray energy. The spectrum is well fitted by either a 19+-4 keV Bremsstrahlung or Gamma=1.8+-0.1 power law, with an iron emission line feature and significant absorption in each case. Conclusions. IGR J15094-6649 is confirmed to be an intermediate polar.Comment: 3 pages, 5 figures. Submitted to A&

    Magnetic Cataclysmic Variable Accretion Flows

    Get PDF
    We have used a magnetic accretion model to investigate the accretion flows of magnetic cataclysmic variables (mCVs) throughout a range of parameter space. The results of our numerical simulations demonstrate that broadly four types of flow are possible: discs, streams, rings and propellers. We show that the equilibrium spin periods in asynchronous mCVs, for a given orbital period and magnetic moment, occur where the flow changes from a type characterised by spin-up (i.e. disc or stream) to one characterised by spin-down (i.e. propeller or ring). 'Triple points' occur in the plane of spin-to-orbital period ratio versus magnetic moment, at which stream-disc-propeller flows or stream-ring-propeller flows can co-exist. The first of these is identified as corresponding to when the corotation radius is equal to the circularisation radius, and the second as where the corotation radius is equal to the distance from white dwarf to the L1 point. If mCVs are accreting at their equilibrium spin rates, then for a mass ratio of 0.5, those with Pspin/Porb < 0.1 will be disc-like, those with 0.1 < Pspin/Porb < 0.5 will be stream-like, and those with Pspin/Porb ~ 0.5 will be ring-like. In each case, some material is also lost from the binary in order to maintain angular momentum balance. The spin to orbital period ratio at which the systems transition between these flow types decreases as the mass ratio of the stellar components increases, and vice versa

    Are the INTEGRAL Intermediate Polars Different?

    Get PDF
    One of the biggest surprises of the INTEGRAL mission was the detection of large numbers of magnetic cataclysmic variables – in particular the intermediate polar (IP) subclass. Not only have many previously known systems been detected, but many new ones have also been found and subsequently classified from optical follow-up observations, increasing the sample of IPs by ! 15%. We have recently been using a particle hydrodynamic code to investigate the accretion flows of IPs and determine the equilibrium spin-rates and accretion flow patterns across a wide range of orbital periods, mass ratios and magnetic field strengths. We use the results of these accretion flow simulations to examine whether the INTEGRAL IPs differ from the overall population and conclude that they do not. Most IPs are likely to be INTEGRAL sources, given sufficient exposure. Currently however, none of the 'EX Hya-like' IPs, with large spin-to-orbital period ratios and short orbital periods, are detected by INTEGRAL. If this continues to be the case once the whole sky has a comparable INTEGRAL exposure, it may indicate that the ring-like mode of accretion which we demonstrate occurs in these systems is responsible for their different appearance

    The Accretion Flows and Evolution of Magnetic Cataclysmic Variables

    Full text link
    We have used a model of magnetic accretion to investigate the accretion flows of magnetic cataclysmic variables. Numerical simulations demonstrate that four types of flow are possible: discs, streams, rings and propellers. The fundamental observable determining the accretion flow, for a given mass ratio, is the spin-to-orbital period ratio of the system. If IPs are accreting at their equilibrium spin rates, then for a mass ratio of 0.5, those with Pspin/Porb < 0.1 will be disc-like, those with 0.1 < Pspin/Porb < 0.6 will be stream-like, and those with Pspin/Porb ~ 0.6 will be ring-like. The spin to orbital period ratio at which the systems transition between these flow types increases as the mass ratio of the stellar components decreases. For the first time we present evolutionary tracks of mCVs which allow investigation of how their accretion flow changes with time. As systems evolve to shorter orbital periods and smaller mass ratios, in order to maintain spin equilibrium, their spin-to-orbital period ratio will generally increase. As a result, the relative occurrence of ring-like flows will increase, and the occurrence of disc-like flows will decrease, at short orbital periods. The growing number of systems observed at high spin-to-orbital period ratios with orbital periods below 2h, and the observational evidence for ring-like accretion in EX Hya, are fully consistent with this picture.Comment: Accepted for publication in ApJ. 6 figures - included here at low resolutio

    RXTE confirmation of the intermediate polar status of Swift J0732.5-1331

    Get PDF
    Aims: We intend to establish the X-ray properties of Swift J0732.5-1331 and therefore confirm its status as an intermediate polar. Methods: We analysed 36,240 s of X-ray data from RXTE. Frequency analysis was used to constrain temporal variations and spectral analysis used to characterise the emission and absorption properties. Results: The X-ray spin period is confirmed to be 512.4(3) s with a strong first harmonic. No modulation is detected at the candidate orbital period of 5.6 h, but a coherent modulation is present at the candidate 11.3 h period. The spectrum is consistent with a 37 keV bremsstrahlung continuum with an iron line at 6.4 keV absorbed by an equivalent hydrogen column density of around 1022 atoms cm-2. Conclusions: Swift J0732-1331 is confirmed to be an intermediate polar

    Discovery of polarised emission from the long period intermediate polar RX J2133.7+5107

    Get PDF
    Aims. We intended to investigate the magnetic field properties of the recently identified intermediate polar RX J2133.7+5107. Methods. We carried out UBVRI photopolarimetric observations of the target using TURPOL on the Nordic Optical Telescope over 2 nights in July/August 2006. Results. We found that RX J2133.7+5107 emits circularly polarized light in all UBVRI bands (up to 3%). This is the first detection of circular polarization in this object. The circular polarization modulations and flux variations give hints of cyclotron beaming effects and suggest that the field strength in RX J2133.7+5107 is possibly one of the highest found amongst the IPs. Conclusions. The highly asynchronous rotation of RX J2133.7+5107 (the spin to orbital period ratio is ~0.022), suggests that it has only recently come into contact and although it is likely to evolve into a polar, it is currently a long way from doing so. We suggest a possible link between the detection of a soft X-ray blackbody component and polarized optical emission in intermediate polars

    Maximal Sharing in the Lambda Calculus with letrec

    Full text link
    Increasing sharing in programs is desirable to compactify the code, and to avoid duplication of reduction work at run-time, thereby speeding up execution. We show how a maximal degree of sharing can be obtained for programs expressed as terms in the lambda calculus with letrec. We introduce a notion of `maximal compactness' for lambda-letrec-terms among all terms with the same infinite unfolding. Instead of defined purely syntactically, this notion is based on a graph semantics. lambda-letrec-terms are interpreted as first-order term graphs so that unfolding equivalence between terms is preserved and reflected through bisimilarity of the term graph interpretations. Compactness of the term graphs can then be compared via functional bisimulation. We describe practical and efficient methods for the following two problems: transforming a lambda-letrec-term into a maximally compact form; and deciding whether two lambda-letrec-terms are unfolding-equivalent. The transformation of a lambda-letrec-term LL into maximally compact form L0L_0 proceeds in three steps: (i) translate L into its term graph G=[[L]]G = [[ L ]]; (ii) compute the maximally shared form of GG as its bisimulation collapse G0G_0; (iii) read back a lambda-letrec-term L0L_0 from the term graph G0G_0 with the property [[L0]]=G0[[ L_0 ]] = G_0. This guarantees that L0L_0 and LL have the same unfolding, and that L0L_0 exhibits maximal sharing. The procedure for deciding whether two given lambda-letrec-terms L1L_1 and L2L_2 are unfolding-equivalent computes their term graph interpretations [[L1]][[ L_1 ]] and [[L2]][[ L_2 ]], and checks whether these term graphs are bisimilar. For illustration, we also provide a readily usable implementation.Comment: 18 pages, plus 19 pages appendi

    Regularized expression for the gravitational energy-momentum in teleparallel gravity and the principle of equivalence

    Full text link
    The expression of the gravitational energy-momentum defined in the context of the teleparallel equivalent of general relativity is extended to an arbitrary set of real-valued tetrad fields, by adding a suitable reference space subtraction term. The characterization of tetrad fields as reference frames is addressed in the context of the Kerr space-time. It is also pointed out that Einstein's version of the principle of equivalence does not preclude the existence of a definition for the gravitational energy-momentum density.Comment: 17 pages, Latex file, no figure; minor correction in eq. (14), three references added, to appear in the GRG Journa

    Why do some intermediate polars show soft X-ray emission? A survey of XMM-Newton spectra

    Full text link
    We make a systematic analysis of the XMM-Newton X-ray spectra of intermediate polars (IPs) and find that, contrary to the traditional picture, most show a soft blackbody component. We compare the results with those from AM Her stars and deduce that the blackbody emission arises from reprocessing of hard X-rays, rather than from the blobby accretion sometimes seen in AM Hers. Whether an IP shows a blackbody component appears to depend primarily on geometric factors: a blackbody is not seen in those that have accretion footprints that are always obscured by accretion curtains or are only visible when foreshortened on the white-dwarf limb. Thus we argue against previous suggestions that the blackbody emission characterises a separate sub-group of IPs which are more akin to AM Hers, and develop a unified picture of the blackbody emission in these stars.Comment: 9 pages, 6 figures. Accepted for publication in Ap
    • …
    corecore