1,451 research outputs found

    Fundamental Limit of 1/f Frequency Noise in Semiconductor Lasers Due to Mechanical Thermal Noise

    Get PDF
    So-called 1/f noise has power spectral density inversely proportional to frequency, and is observed in many physical processes. Single longitudinal-mode semiconductor lasers, used in variety of interferometric sensing applications, as well as coherent communications, exhibit 1/f frequency noise at low frequency (typically below 100kHz). Here we evaluate mechanical thermal noise due to mechanical dissipation in semiconductor laser components and give a plausible explanation for the widely-observed 1/f frequency noise, applying a methodology developed for fixed-spacer cavities for laser frequency stabilization. Semiconductor-laser's short cavity, small beam radius, and lossy components are expected to emphasize thermal-noise-limited frequency noise. Our simple model largely explains the different 1/f noise levels observed in various semiconductor lasers, and provides a framework where the noise may be reduced with proper design

    Progress and Plans for a US Laser System for LISA

    Get PDF
    A highly stable and robust laser system is a key component of the space-based LISA (Laser Interferometer Space Antenna) mission architecture. We describe our progress and plans to demonstrate a TRL (Technology Readiness Level) 5 LISA laser system at Goddard Space Flight Center by 2020. The laser system includes a low-noise oscillator followed by a power fiber amplifier. The oscillator is a low-mass, compact external cavity laser, consisting of a semiconductor laser coupled to an optical cavity, built by the laser vendor Redfern Integrated Optics. The amplifier is a diode-pumped Yb fiber with 2.5 watts output, built at Goddard. We show noise and reliability data for the full laser system, and describe our plans to reach TRL 5

    Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales

    Full text link
    The first three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k2.8k^{-2.8} as observed in \emph{in situ} spacecraft measurements of the "dissipation range" of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic \Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at sub-ion-Larmor radius scales, which provides the first evidence of the ion entropy cascade in an electromagnetic turbulence simulation.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    A Precision Angle Sensor using an Optical Lever inside a Sagnac Interferometer

    Full text link
    We built an ultra low noise angle sensor by combining a folded optical lever and a Sagnac interferometer. The instrument has a measured noise floor of 1.3 prad / Hz^(1/2) at 2.4 kHz. We achieve this record angle sensitivity using a proof-of-concept apparatus with a conservative N=11 bounces in the optical lever. This technique could be extended to reach sub-picoradian / Hz^(1/2) sensitivities with an optimized design.Comment: 3 pages, 4 figure

    An evaluation of possible mechanisms for anomalous resistivity in the solar corona

    Full text link
    A wide variety of transient events in the solar corona seem to require explanations that invoke fast reconnection. Theoretical models explaining fast reconnection often rely on enhanced resistivity. We start with data derived from observed reconnection rates in solar flares and seek to reconcile them with the chaos-induced resistivity model of Numata & Yoshida (2002) and with resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find that the resistivities arising from either of these mechanisms, when localized over lengthscales of the order of an ion skin depth, are capable of explaining the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic

    Sub-kHz lasing of a CaF_2 Whispering Gallery Mode Resonator Stabilized Fiber Ring Laser

    Full text link
    We utilize a high quality calcium fluoride whispering-gallery-mode resonator to stabilize a simple erbium doped fiber ring laser with an emission frequency of 196 THz (wavelenght 1530 nm) to a linewidth below 650 Hz. This corresponds to a relative stability of 3.3 x 10^(-12) over 16 \mus. In order to characterize the linewidth we use two identical self-built lasers and a commercial laser to determine the individual lasing linewidth via the three-cornered hat method.Comment: 4 pages, 3 figure
    corecore