80 research outputs found

    When a photograph can be heard: Vision activates the auditory cortex within 110 ms

    Get PDF
    As the makers of silent movies knew well, it is not necessary to provide an actual auditory stimulus to activate the sensation of sounds typically associated with what we are viewing. Thus, you could almost hear the neigh of Rodolfo Valentino's horse, even though the film was mute. Evidence is provided that the mere sight of a photograph associated with a sound can activate the associative auditory cortex. High-density ERPs were recorded in 15 participants while they viewed hundreds of perceptually matched images that were associated (or not) with a given sound. Sound stimuli were discriminated from non-sound stimuli as early as 110 ms. SwLORETA reconstructions showed common activation of ventral stream areas for both types of stimuli and of the associative temporal cortex, at the earliest stage, only for sound stimuli. The primary auditory cortex (BA41) was also activated by sound images after ∼ 200 ms

    Effects of stimulus duration on audio-visual synchrony perception

    Get PDF
    The integration of visual and auditory inputs in the human brain occurs only if the components are perceived in temporal proximity, that is, when the intermodal time difference falls within the so-called subjective synchrony range. We used the midpoint of this range to estimate the point of subjective simultaneity (PSS). We measured the PSS for audio-visual (AV) stimuli in a synchrony judgment task, in which subjects had to judge a given AV stimulus using three response categories (audio first, synchronous, video first). The relevant stimulus manipulation was the duration of the auditory and visual components. Results for unimodal auditory and visual stimuli have shown that the perceived onset shifts to relatively later positions with increasing stimulus duration. These unimodal shifts should be reflected in changing PSS values, when AV stimuli with different durations of the auditory and visual components are used. The results for 17 subjects showed indeed a significant shift of the PSS for different duration combinations of the stimulus components. Because the shifts were approximately equal for duration changes in either of the components, no net shift of the PSS was observed as long as the durations of the two components were equal. This result indicates the need to appropriately account for unimodal timing effects when quantifying intermodal synchrony perceptio

    Structure-Function Studies of DNA Binding Domain of Response Regulator KdpE Reveals Equal Affinity Interactions at DNA Half-Sites

    Get PDF
    Expression of KdpFABC, a K+ pump that restores osmotic balance, is controlled by binding of the response regulator KdpE to a specific DNA sequence (kdpFABCBS) via the winged helix-turn-helix type DNA binding domain (KdpEDBD). Exploration of E. coli KdpEDBD and kdpFABCBS interaction resulted in the identification of two conserved, AT-rich 6 bp direct repeats that form half-sites. Despite binding to these half-sites, KdpEDBD was incapable of promoting gene expression in vivo. Structure-function studies guided by our 2.5 Å X-ray structure of KdpEDBD revealed the importance of residues R193 and R200 in the α-8 DNA recognition helix and T215 in the wing region for DNA binding. Mutation of these residues renders KdpE incapable of inducing expression of the kdpFABC operon. Detailed biophysical analysis of interactions using analytical ultracentrifugation revealed a 2∶1 stoichiometry of protein to DNA with dissociation constants of 200±100 and 350±100 nM at half-sites. Inactivation of one half-site does not influence binding at the other, indicating that KdpEDBD binds independently to the half-sites with approximately equal affinity and no discernable cooperativity. To our knowledge, these data are the first to describe in quantitative terms the binding at half-sites under equilibrium conditions for a member of the ubiquitous OmpR/PhoB family of proteins

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Forensic DNA methylation profiling from minimal traces:How low can we go?

    No full text
    Analysis of human DNA methylation (DNAm) can provide additional investigative leads in crime cases, e.g. the type of tissue or body fluid, the chronological age of an individual, and differentiation between identical twins. In contrast to the genetic profile, the DNAm level is not the same in every cell. At the single cell level, DNAm represents a binary event at a defined CpG site (methylated versus non-methylated). The DNAm level from a DNA extract however represents the average level of methylation of the CpG of interest of all molecules in the forensic sample. The variance of DNAm levels between replicates is often attributed to technological issues, i.e. degradation of DNA due to bisulfite treatment, preferential amplification of DNA, and amplification failure. On the other hand, we show that stochastic variations can lead to gross fluctuation in the analysis of methylation levels in samples with low DNA levels. This stochasticity in DNAm results is relevant since low DNA amounts (1pg - 1ng) is rather the norm than the exception when analyzing forensic DNA samples. This study describes a conceptual analysis of DNAm profiling and its dependence on the amount of input DNA. We took a close look at the variation of DNAm analysis due to DNA input and its consequences for different DNAm-based forensic applications. As can be expected, the 95%-confidence interval of measured DNAm becomes narrower with increasing amounts of DNA. We compared this aspect for two different DNAm-based forensic applications: body fluid identification and chronological age determination. Our study shows that DNA amount should be well considered when using DNAm for forensic applications
    corecore