8,023 research outputs found

    The quantum Gaussian well

    Full text link
    Different features of a potential in the form of a Gaussian well have been discussed extensively. Although the details of the calculation are involved, the general approach uses a variational method and WKB approximation, techniques which should be familiar to advanced undergraduates. A numerical solution of the Schr\"odinger equation through diagonalization has been developed in a self-contained way, and physical applications of the potential are mentioned.Comment: 11 pages, 4 figures, To be published in American Journal of Physic

    Stability of Circular Orbits in General Relativity: A Phase Space Analysis

    Full text link
    Phase space method provides a novel way for deducing qualitative features of nonlinear differential equations without actually solving them. The method is applied here for analyzing stability of circular orbits of test particles in various physically interesting environments. The approach is shown to work in a revealing way in Schwarzschild spacetime. All relevant conclusions about circular orbits in the Schwarzschild-de Sitter spacetime are shown to be remarkably encoded in a single parameter. The analysis in the rotating Kerr black hole readily exposes information as to how stability depends on the ratio of source rotation to particle angular momentum. As a wider application, it is exemplified how the analysis reveals useful information when applied to motion in a refractive medium, for instance, that of optical black holes.Comment: 20 pages. Accepted for publication in Int. J. theor. Phy

    Quantum Hall Effect and Semimetallic Behavior of Dual-Gated ABA-Stacked Trilayer Graphene

    Get PDF
    The electronic structure of multilayer graphenes depends strongly on the number of layers as well as the stacking order. Here we explore the electronic transport of purely ABA-stacked trilayer graphenes in a dual-gated field-effect device configuration. We find that both the zero-magnetic-field transport and the quantum Hall effect at high magnetic fields are distinctly different from the monolayer and bilayer graphenes, and that they show electron-hole asymmetries that are strongly suggestive of a semimetallic band overlap. When the ABA trilayers are subjected to an electric field perpendicular to the sheet, Landau level splittings due to a lifting of the valley degeneracy are clearly observed.Comment: 5 figure

    Matter waves in a gravitational field: An index of refraction for massive particles in general relativity

    Get PDF
    We consider the propagation of massive-particle de Broglie waves in a static, isotropic metric in general relativity. We demonstrate the existence of an index of refraction that governs the waves and that has all the properties of a classical index of refraction. We confirm our interpretation with a WKB solution of the general-relativistic Klein-Gordon equation. Finally, we make some observations on the significance of the optical action.Comment: 20 pages, latex, ps and pdf. To appear in Am.J.Phys September, 200

    The Dynamics of Radio Galaxies and Double-Double Radio Galaxies

    Full text link
    Relativistic and magnetised plasma ejected by radio loud AGNs through jets form the diffuse lobes of radio galaxies. The radiating particles (electron/electron-positron) in lobes emit in radio via the synchrotron process and X-ray via inverse-Compton scattering of cosmic microwave background photons. The thermal environment around radio galaxies emits X-rays via the thermal bremsstrahlung process. By combining information from these processes we can measure physical conditions in and around the radio lobes and thus study the dynamics of radio galaxies, including double-double radio galaxies.Comment: 11 pages, 4 figures, Diffuse Radio Plasma Conference proceedings (held in Raman Research Institute, Bangalore, India

    Coupling Unifications in Gauge-Higgs Unified Orbifold Models

    Full text link
    Supersymmetric gauge theories, in higher dimensions compactified in an orbifold, give a natural framework to unify the gauge bosons, Higgs fields and even the matter fields in a single multiplet of the unifying gauge symmetry. The extra dimensions and the supersymmetry are the two key ingredients for such an unification. In this work, we investigate various scenarios for the unification of the three gauge couplings, and the Yukawa couplings in the Minimal Supersymmetric Standard Model (MSSM), as well as the trilinear Higgs couplings \lambda and \kappa of the Non-Minimal Supersymmetric Standard Model (NMSSM). We present an SU(8) model in six dimensions with N=2 supersymmetry, compactified in a T^2/Z_6 orbifold which unifies the three gauge couplings with \lambda and \kappa of NMSSM. Then, we present an SU(9) model in 6D, which, in addition, includes partial unification of Yukawa couplings, either for the up-type (top quark and Dirac tau-neutrino) or down-type (bottom quark and tau lepton). We also study the phenomenological implications of these various unification scenarios using the appropriate renormalization group equations, and show that such unification works very well with the measured low energy values of the couplings. The predicted upper bounds for the lightest neutral Higgs boson mass in our model is higher than those in MSSM, but lower that those in the general NMSSM (where the couplings \lambda and \kappa are arbitrary). Some of the predictions of our models can be tested in the upcoming Large Hadron Collider.Comment: 29 pages, 4 figure
    • …
    corecore