829 research outputs found

    1/f noise of Josephson-junction-embedded microwave resonators at single photon energies and millikelvin temperatures

    Full text link
    We present measurements of 1/f frequency noise in both linear and Josephson-junction-embedded superconducting aluminum resonators in the low power, low temperature regime - typical operating conditions for superconducting qubits. The addition of the Josephson junction does not result in additional frequency noise, thereby placing an upper limit for fractional critical current fluctuations of 10−810^{-8} (Hz−1/2^{-1/2}) at 1 Hz for sub-micron, shadow evaporated junctions. These values imply a minimum dephasing time for a superconducting qubit due to critical current noise of 40 -- 1400 μ\mus depending on qubit architecture. Occasionally, at temperatures above 50 mK, we observe the activation of individual fluctuators which increase the level of noise significantly and exhibit Lorentzian spectra

    Cavity-assisted quantum bath engineering

    Full text link
    We demonstrate quantum bath engineering for a superconducting artificial atom coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity, we create a dissipative environment that autonomously relaxes the atom to an arbitrarily specified coherent superposition of the ground and excited states. In the presence of background thermal excitations, this mechanism increases the state purity and effectively cools the dressed atom state to a low temperature

    Quantum State Sensitivity of an Autoresonant Superconducting Circuit

    Get PDF
    When a frequency chirped excitation is applied to a classical high-Q nonlinear oscillator, its motion becomes dynamically synchronized to the drive and large oscillation amplitude is observed, provided the drive strength exceeds the critical threshold for autoresonance. We demonstrate that when such an oscillator is strongly coupled to a quantized superconducting qubit, both the effective nonlinearity and the threshold become a non-trivial function of the qubit-oscillator detuning. Moreover, the autoresonant threshold is sensitive to the quantum state of the qubit and may be used to realize a high fidelity, latching readout whose speed is not limited by the oscillator Q.Comment: 5 pages, 4 figure

    Bose-Einstein condensation in a circular waveguide

    Full text link
    We have produced Bose-Einstein condensates in a ring-shaped magnetic waveguide. The few-millimeter diameter non-zero bias ring is formed from a time-averaged quadrupole ring. Condensates which propagate around the ring make several revolutions within the time it takes for them to expand to fill the ring. The ring shape is ideally suited for studies of vorticity in a multiply-connected geometry and is promising as a rotation sensor.Comment: 4 pages, 4 figure

    Intensity-based image registration using multiple distributed agents

    Get PDF
    Image registration is the process of geometrically aligning images taken from different sensors, viewpoints or instances in time. It plays a key role in the detection of defects or anomalies for automated visual inspection. A multiagent distributed blackboard system has been developed for intensity-based image registration. The images are divided into segments and allocated to agents on separate processors, allowing parallel computation of a similarity metric that measures the degree of likeness between reference and sensed images after the application of a transform. The need for a dedicated control module is removed by coordination of agents via the blackboard. Tests show that additional agents increase speed, provided the communication capacity of the blackboard is not saturated. The success of the approach in achieving registration, despite significant misalignment of the original images, is demonstrated in the detection of manufacturing defects on screen-printed plastic bottles and printed circuit boards
    • …
    corecore