829 research outputs found
1/f noise of Josephson-junction-embedded microwave resonators at single photon energies and millikelvin temperatures
We present measurements of 1/f frequency noise in both linear and
Josephson-junction-embedded superconducting aluminum resonators in the low
power, low temperature regime - typical operating conditions for
superconducting qubits. The addition of the Josephson junction does not result
in additional frequency noise, thereby placing an upper limit for fractional
critical current fluctuations of (Hz) at 1 Hz for
sub-micron, shadow evaporated junctions. These values imply a minimum dephasing
time for a superconducting qubit due to critical current noise of 40 -- 1400
s depending on qubit architecture. Occasionally, at temperatures above 50
mK, we observe the activation of individual fluctuators which increase the
level of noise significantly and exhibit Lorentzian spectra
Cavity-assisted quantum bath engineering
We demonstrate quantum bath engineering for a superconducting artificial atom
coupled to a microwave cavity. By tailoring the spectrum of microwave photon
shot noise in the cavity, we create a dissipative environment that autonomously
relaxes the atom to an arbitrarily specified coherent superposition of the
ground and excited states. In the presence of background thermal excitations,
this mechanism increases the state purity and effectively cools the dressed
atom state to a low temperature
Quantum State Sensitivity of an Autoresonant Superconducting Circuit
When a frequency chirped excitation is applied to a classical high-Q
nonlinear oscillator, its motion becomes dynamically synchronized to the drive
and large oscillation amplitude is observed, provided the drive strength
exceeds the critical threshold for autoresonance. We demonstrate that when such
an oscillator is strongly coupled to a quantized superconducting qubit, both
the effective nonlinearity and the threshold become a non-trivial function of
the qubit-oscillator detuning. Moreover, the autoresonant threshold is
sensitive to the quantum state of the qubit and may be used to realize a high
fidelity, latching readout whose speed is not limited by the oscillator Q.Comment: 5 pages, 4 figure
Bose-Einstein condensation in a circular waveguide
We have produced Bose-Einstein condensates in a ring-shaped magnetic
waveguide. The few-millimeter diameter non-zero bias ring is formed from a
time-averaged quadrupole ring. Condensates which propagate around the ring make
several revolutions within the time it takes for them to expand to fill the
ring. The ring shape is ideally suited for studies of vorticity in a
multiply-connected geometry and is promising as a rotation sensor.Comment: 4 pages, 4 figure
Intensity-based image registration using multiple distributed agents
Image registration is the process of geometrically aligning images taken from different sensors, viewpoints or instances in time. It plays a key role in the detection of defects or anomalies for automated visual inspection. A multiagent distributed blackboard system has been developed for intensity-based image registration. The images are divided into segments and allocated to agents on separate processors, allowing parallel computation of a similarity metric that measures the degree of likeness between reference and sensed images after the application of a transform. The need for a dedicated control module is removed by coordination of agents via the blackboard. Tests show that additional agents increase speed, provided the communication capacity of the blackboard is not saturated. The success of the approach in achieving registration, despite significant misalignment of the original images, is demonstrated in the detection of manufacturing defects on screen-printed plastic bottles and printed circuit boards
- …