46 research outputs found

    Metabolic and Gene Expression Changes Triggered by Nitrogen Deprivation in the Photoautotrophically Grown Microalgae \u3ci\u3eChlamydomonas reinhardtii\u3c/i\u3e and \u3ci\u3eCoccomyxa\u3c/i\u3e sp. C-169

    Get PDF
    Microalgae are emerging as suitable feedstocks for renewable biofuel production. Characterizing the metabolic pathways involved in the biosynthesis of energy-rich compounds, such as lipids and carbohydrates, and the environmental factors influencing their accumulation is necessary to realize the full potential of these organisms as energy resources. The model green alga Chlamydomonas reinhardtii accumulates significant amounts of triacylglycerols (TAGs) under nitrogen starvation or salt stress in medium containing acetate. However, since cultivation of microalgae for biofuel production may need to rely on sunlight as the main source of energy for biomass synthesis, metabolic and gene expression changes occurring in Chlamydomonas and Coccomyxa subjected to nitrogen deprivation were examined under strictly photoautotrophic conditions. Interestingly, nutrient depletion triggered a similar pattern of early synthesis of starch followed by substantial TAG accumulation in both of these fairly divergent green microalgae. A marked decrease in chlorophyll and protein contents was also observed, including reduction in ribosomal polypeptides and some key enzymes for CO2 assimilation like ribulose-1,5-bisphosphate carboxylase/oxygenase. These results suggest that turnover of nitrogen-rich compounds such as proteins may provide carbon/energy for TAG biosynthesis in the nutrient deprived cells. In Chlamydomonas, several genes coding for diacylglycerol:acyl-CoA acyltransferases, catalyzing the acylation of diacylglycerol to TAG, displayed increased transcript abundance under nitrogen depletion but, counterintuitively, genes encoding enzymes for de novo fatty acid synthesis, such as 3-ketoacyl-ACP synthase I, were down-regulated. Understanding the interdependence of these anabolic and catabolic processes and their regulation may allow the engineering of algal strains with improved capacity to convert their biomass into useful biofuel precursors

    Ecophysiological responses of native invasive woody \u3ci\u3eJuniperus virginiana\u3c/i\u3e L. to resource availability and stand characteristics in the semiarid grasslands of the Nebraska Sandhills

    Get PDF
    Vegetation in grasslands is changing at an unprecedented rate. In the Nebraska Sandhills, this shift is attributed in part to encroachment of the woody species Juniperus virginiana. We investigated changes in resource availability and their feedback on seasonal trends in photosynthetic characteristics of J. virginiana trees scattered in open grasslands vs. a dense 57-year-old stand. Dense stand exhibited lower volumetric soil water content, NH4 +, NO3 –, and δ13C, as well as foliage δ13C, δ15N, and N content, compared to grasslands. Water potential was higher in trees in grasslands compared to dense stand. J. virginiana in dense stand exhibited similar trends to trees in grasslands for net photosynthetic rate (PN), stomatal conductance, transpiration, maximum photochemical efficiency of PSII, maximum carboxylation velocity, and maximum rate of electron transport. PN peaked early summer and declined in the fall, with trees in open grasslands lagging behind those in dense stand. Plasticity of this species may place it at a competitive advantage in the Sandhills, further altering grasslands vegetation and ecosystem processes
    corecore