5 research outputs found

    Accidental Use of Milk With an Increased Concentration of Aflatoxins Causes Significant DNA Damage in Hospital Workers Exposed to Ionizing Radiation

    No full text
    © Copyright © 2020 Mrdjanovic, Sudji, Srdjenovic, Dojcinovic, Bogdanovic, Jakovljevic and Jurisic. The occupational exposure to ionizing radiation (Irad) or associated with mycotoxin-contaminated food may lead to genome damage and contribute to health risk. DNA damage in 80 blood samples of hospital workers occupationally exposed to low—doses of Irad was compared with 80 healthy controls. Among them, 40 participants accidentally consumed milk with increased concentration of Aflatoxin. All participants underwent the testing for micronuclei from blood, and 40 of them 8-OHdG from urine. The frequency of micronuclei (MN) was analyzed by cytokinesis-block peripheral blood lymphocytes and the level of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) by ELISA. The Irad led to increased frequency of MN (p < 0.05) and 8-OHdG level at exposed hospital workers. The consumption of milk with increased concentration of aflatoxin probably raised MN frequency and 8-OHdG value. Higher consumption of aflatoxin-contaminated milk (≥2 L/monthly) caused significantly increased MN frequency and 8-OHdG value in comparison to lower milk intake (≤0.5 L/monthly). Also, confounding factors, such as age, gender, and smoking status of all participants were included in the study. The obtained results revealed an increased incidence of MN and 8-OHdG level among hospital workers exposed to low-doses of IRad and milk with increased aflatoxin concentration

    The oxidative stress parameters as useful tools in evaluating the dna damage and changes in the complete blood count in hospital workers exposed to low doses of antineoplastic drugs and ionizing radiation

    No full text
    Hospital workers at the Oncology Department are occupationally exposed to antineo-plastic drugs (ANTNP) or low doses of ionizing radiation (Irrad). Therefore, the aim of this study was to evaluate the level of DNA damage, the oxidative stress parameters and complete blood count (CBC) of hospital workers in order to analyze the negative health effects of ANTNP and low dose Irrad. The frequency of micronuclei (MN) and proliferation index (PI) were analyzed by cytokinesis-block test. The oxidative stress biomarkers evaluated were the level of lipid peroxidation in plasma and catalase activity (CAT) in erythrocytes. A group of 86 hospital workers (35 exposed to ANTPN and 51 to Irrad) had increased MN frequency, CAT activity and level of lipid peroxidation compared to the control group, which consisted of 24 volunteers. The hemoglobin level was lower in the ANTNP group compared to thecontrol group, while a significant difference in RBC was rec-orded between thecontrol and Irrad groups, and in platelet count betweentheIrrad and ANTNP group. The results showed increased DNA damage, oxidative stress parameters, as well as impair-ment on complete blood count in hospital workers occupationally exposed to antineoplastic drugs and low-dose ionizing radiation. As this research has shown the importance of oxidative stress, we suggest that in addition to routine methods in periodic medical evaluation, the possibility of apply-ing oxidative stress parameters is considered. Moreover, hospital workers exposed to ANTNP and Irrad in the workplace should undergo not only a more complete health prevention procedure but also have a more appropriate health promotion

    Effect of ELF-EMF on antioxidant status and micronuclei in K562 cells and normal lymphocytes

    No full text
    The effect of ELF-EMF on DNA through changes in antioxidative enzyme activities has not been sufficiently explored yet. The aim of this study was to determine ELF-EMF effect on antioxidative enzymes in cancer cell line and genotoxic potential on normal human lymphocytes. K562 cells were exposed to 50 Hz ELF-EMF (40 μT, 100 μT; 3 h, 24 h) and spectrophotometric determination of lipid peroxidation and antioxidative enzyme activities was conducted. Genotoxicity of ELF-EMF (50 Hz, 100 μT) was investigated by cytokinesis-block micronucleus assay in a normal human lymphocytes (exposure 24 h and 48 h). Results demonstrated that ELF-EMF did not alter the process of lipid peroxidation and superoxide dismutase activity. Catalase activity was increased only after application of 100 μT EMF for 24 h. Glutathione-S-transferase and -reductase activities were increased. Treatment with 100 μT ELF-EMF (24 h, 48 h) significantly reduced micronuclei incidence, while cell proliferation was significantly increased. Results indicate that 50 Hz ELF-EMF (40 μT, 100 μT) are week stressors which alone cannot generate enough ROS to induce process of lipid peroxidation in cancer cell line but strong enough to induce response of antioxidative system. Furthermore, 100 μT ELF-EMF in human lymphocytes did not exhibit genotoxic potential during 24 h and 48 h treatment, but stimulated cell proliferation. © 2014 Versita Warsaw and Springer-Verlag Wien
    corecore