45 research outputs found

    Endothelial Progenitor Cells Enhance Islet Engraftment, Influence b-Cell Function, and Modulate Islet Connexin 36 Expression

    Get PDF
    This article has been made available by the publisher under a Creative Commons Attribution Non-Commercial (CC BY NC) license. https://www.cognizantcommunication.com/general-subscription-policies/open-access-policy Accessed 10/2/15The success of pancreatic islet transplantation is limited by delayed engraftment and suboptimal function in the longer term. Endothelial progenitor cells (EPCs) represent a potential cellular therapy that may improve the engraftment of transplanted pancreatic islets. In addition, EPCs may directly affect the function of pancreatic β-cells. The objective of this study was to examine the ability of EPCs to enhance pancreatic islet transplantation in a murine syngeneic marginal mass transplant model and to examine the mechanisms through which this occurs. We found that cotransplanted EPCs improved the cure rate and initial glycemic control of transplanted islets. Gene expression data indicate that EPCs, or their soluble products, modulate the expression of the β-cell surface molecule connexin 36 and affect glucose-stimulated insulin release in vitro. In conclusion, EPCs are a promising candidate for improving outcomes in islet transplantation, and their mechanisms of action warrant further study

    Insulin-like growth factor-II (IGF-II) prevents proinflammatory cytokine-induced apoptosis and significantly improves islet survival after transplantation

    Get PDF
    BackgroundThe early loss of functional islet mass (50-70%) due to apoptosis after clinical transplantation contributes to islet allograft failure. Insulin-like growth factor (IGF)-II is an antiapoptotic protein that is highly expressed in β-cells during development but rapidly decreases in postnatal life.MethodsWe used an adenoviral (Ad) vector to overexpress IGF-II in isolated rat islets and investigated its antiapoptotic action against exogenous cytokines interleukin-1β- and interferon-γ-induced islet cell death in vitro. Using an immunocompromised marginal mass islet transplant model, the ability of Ad-IGF-II-transduced rat islets to restore euglycemia in nonobese diabetic/severe combined immunodeficient diabetic recipients was assessed.ResultsAd-IGF-II transduction did not affect islet viability or function. Ad-IGF-II cytokine-treated islets exhibited decreased cell death (40% ± 2.8%) versus Ad-GFP and untransduced control islets (63.2% ± 2.5% and 53.6% ± 2.3%, respectively). Ad-IGF-II overexpression during cytokine treatment resulted in a marked reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive apoptotic cells (8.3% ± 1.4%) versus Ad-GFP control (41% ± 4.2%) and untransduced control islets (46.5% ± 6.2%). Western blot analysis confirmed that IGF-II inhibits apoptosis via activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Transplantation of IGF-II overexpressing islets under the kidney capsule of diabetic mice restored euglycemia in 77.8% of recipients compared with 18.2% and 47.5% of Ad-GFP and untransduced control islet recipients, respectively (PConclusionsAntiapoptotic IGF-II decreases apoptosis in vitro and significantly improved islet transplant outcomes in vivo. Antiapoptotic gene transfer is a potentially powerful tool to improve islet survival after transplantation.Hughes, Amy; Mohanasundaram, Daisy; Kireta, Svjetlana; Jessup, Claire F.; Drogemuller, Chris J.; Coates, P. Toby H

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Recovery of Pure Silicon and Other Materials from Disposed Solar Cells

    No full text
    The disposal of used photovoltaic panels is increasing day by day around the world. Therefore, an efficient method for recycling disposed photovoltaic panel is required to decrease environmental pollution. This work is aimed at efficiently recovering pure silicon and other materials such as aluminium, silver, and lead from disposed solar cells using chemical treatments. Earlier, the pure silicon was recovered by treating the solar cells with hydrofluoric acid or mixture of hydrofluoric acid and other chemicals. The usage of hydrofluoric acid is eliminated in the present work as it is highly toxic and corrosive chemical. The pure silicon (99.9984%) has been recovered by sequentially treating with three different chemicals. Aluminium, silver, and lead are also recovered as aluminium hydroxide, silver chloride, and lead oxide, respectively

    Zinc and Zinc Transporter Regulation in Pancreatic Islets and the Potential Role of Zinc in Islet Transplantation

    No full text
    The critical trace element zinc is essential for normal insulin production, and plays a central role in cellular protection against apoptosis and oxidative stress. The regulation of zinc within the pancreas and β-cells is controlled by the zinc transporter families ZnT and ZIP. Pancreatic islets display wide variability in the occurrence of these molecules. The zinc transporter, ZnT8 is an important target for autoimmunity in type 1 diabetes. Gene polymorphisms of this transporter confer sensitivity for immunosuppressive drugs used in islet transplantation. Understanding the biology of zinc transport within pancreatic islets will provide insight into the mechanisms of β-cell death, and may well reveal new pathways for improvement of diabetes therapy, including islet transplantation. This review discusses the possible roles of zinc in β-cell physiology with a special focus on islet transplantation
    corecore