387 research outputs found

    Three-dimensional fast electron transport for ignition-scale inertial fusion capsules

    Get PDF
    Three-dimensional hybrid PIC simulations are presented to study electron energy transport and deposition in a full-scale fast ignition configuration. Multi-prong core heating close to ignition is found when a few GA, few PW beam is injected. Resistive beam filamentation in the corona seeds the 3D current pattern that penetrates the core. Ohmic heating is important in the low-density corona, while classical Coulomb deposition heats the core. Here highest energy densities (few Tbar at 10 keV) are observed at densities above 200 g/cc. Energy coupling to the core ranges from 20 to 30%; it is enhanced by beam collimation and decreases when raising the beam particle energy from 1.5 to 5.5 MeV.Comment: 5 pages, 5 figure

    Analysis of heavy ion fusion targets

    Get PDF

    On collisional free-free photon absorption in warm dense matter

    No full text
    The rate of photon absorption in warm dense matter (WDM) induced by free-free electron-ion collisions is derived from Sommerfeld's cross-section for non-relativistic bremsstrahlung emission, making use of detailed balance relations. Warm dense matter is treated as a metal-like state in the approximation of a uniform degenerate electron gas and a uniform ion background. Total absorption rates are averaged over the electron Fermi distribution. A closed expression is obtained for the absorption rate, depending on temperature, density, and photon energy, that scales with ion charge Z. It is evaluated numerically for the full parameter space, which requires different representations of the hypergeometric functions involved. The results are valid for photon frequencies larger than the plasma frequency of the medium. They are compared with approximate formulas in various asymptotic regions

    Giant half-cycle attosecond pulses

    Full text link
    Half-cycle picosecond pulses have been produced from thin photo-conductors, when applying an electric field across the surface and switching on conduction by a short laser pulse. Then the transverse current in the wafer plane emits half-cycle pulses in normal direction, and pulses of 500 fs duration and 1e6 V/m peak electric field have been observed. Here we show that single half-cycle pulses of 50 as duration and up to 1e13 V/m can be produced when irradiating a double foil target by intense few-cycle laser pulses. Focused onto an ultra-thin foil, all electrons are blown out, forming a uniform sheet of relativistic electrons. A second layer, placed at some distance behind, reflects the drive beam, but lets electrons pass straight. Under oblique incidence, beam reflection provides the transverse current, which emits intense half-cycle pulses. Such a pulse may completely ionize even heavier atoms. New types of attosecond pump-probe experiments will become possible.Comment: 5 pages, 4 figures, to be presented at LEI2011-Light at Extreme Intensities and China-Germany Symposium on Laser Acceleratio

    Self-trapping and acceleration of ions in laser-driven relativistically transparent plasma

    Get PDF
    Self-trapping and acceleration of ions in laser-driven relativistically transparent plasma are investigated with the help of particle-in-cell simulations. A theoretical model based on ion wave breaking is established in describing ion evolution and ion trapping. The threshold for ion trapping is identified. Near the threshold ion trapping is self-regulating and stops when the number of trapped ions is large enough. The model is applied to ion trapping in three-dimensional geometry. Longitudinal distributions of ions and the electric field near the wave breaking point are derived analytically in terms of power-law scalings. The areal density of trapped charge is obtained as a function of the strength of ion wave breaking, which scales with target density for fixed laser intensity. The results of the model are confirmed by the simulations

    Fast ignition of inertial fusion targets by laser-driven carbon beams

    Full text link
    Two-dimensional simulations of ion beam driven fast ignition are presented. Ignition energies of protons with Maxwellian spectrum and carbon ions with quasimonoenergetic and Maxwellian energy distributions are evaluated. The effect of the coronal plasma surrounding the compressed deuterium-tritium is studied for three different fuel density distributions. It is found that quasi- monoenergetic ions have better coupling with the compressed deuterium-tritium and substantially lower ignition energies. Comparison of quasimonoenergetic carbon ions and relativistic electrons as ignitor beams shows similar laser energy requirements, provided that a laser to quasimonoenergetic carbon ion conversion efficiency around 10% can be achieved.Comment: 8 pages, 10 figures, published in Physics of Plasma

    Pion condensation and realistic interactions

    Get PDF

    The reflectivity of relativistic ultra-thin electron layers

    Full text link
    The coherent reflectivity of a dense, relativistic, ultra-thin electron layer is derived analytically for an obliquely incident probe beam. Results are obtained by two-fold Lorentz transformation. For the analytical treatment, a plane uniform electron layer is considered. All electrons move with uniform velocity under an angle to the normal direction of the plane; such electron motion corresponds to laser acceleration by direct action of the laser fields, as it is described in a companion paper. Electron density is chosen high enough to ensure that many electrons reside in a volume \lambda_R^3, where \lambda_R is the wavelength of the reflected light in the rest frame of the layer. Under these conditions, the probe light is back-scattered coherently and is directed close to the layer normal rather than the direction of electron velocity. An important consequence is that the Doppler shift is governed by \gamma_x=(1-(V_x/c)^2)^{-1/2} derived from the electron velocity component V_x in normal direction rather than the full \gamma-factor of the layer electrons.Comment: 7 pages, 4 figures, submitted to the special issue "Fundamental Physics with Ultra-High Fields" in The European Physical Journal

    Acceleration of ultra-thin electron layer. Analytical treatment compared with 1D-PIC simulation

    Full text link
    In this paper, we apply an analytical model [V.V. Kulagin et al., Phys. Plasmas 14,113101 (2007)] to describe the acceleration of an ultra-thin electron layer by a schematic single-cycle laser pulse and compare with one-dimensional particle-in-cell (1D-PIC) simulations. This is in the context of creating a relativistic mirror for coherent backscattering and supplements two related papers in this EPJD volume. The model is shown to reproduce the 1D-PIC results almost quantitatively for the short time of a few laser periods sufficient for the backscattering of ultra-short probe pulses.Comment: 4 pages, 4 figures, submitted to the special issue "Fundamental Physics with Ultra-High Fields" in The European Physical Journal
    corecore