3,818 research outputs found

    Stable self similar blow up dynamics for slightly L^2 supercritical NLS equations

    Full text link
    We consider the focusing nonlinear Schr\"odinger equations i∂tu+Δu+u∣u∣p−1=0i\partial_t u+\Delta u +u|u|^{p-1}=0 in dimension 1≤N≤51\leq N\leq 5 and for slightly L2L^2 supercritical nonlinearities p_c with pc=1+4Np_c=1+\frac{4}{N} and 0<\e\ll 1. We prove the existence and stability in the energy space H1H^1 of a self similar finite time blow up dynamics and provide a qualitative description of the singularity formation near the blow up tim

    Transparent photonic band in metallodielectric nanostructures

    Full text link
    Under certain conditions, a transparent photonic band can be designed into a one-dimensional metallodielectric nanofilm structure. Unlike conventional pass bands in photonic crystals, where the finite thickness of the structure affects the transmission of electromagnetic fields having frequency within the pass band, the properties of the transparent band are almost unaffected by the finite thickness of the structure. In other words, an incident field at a frequency within the transparent band exhibits 100% transmission independent of the number of periods of the structure. The transparent photonic band corresponds to excitation of pure eigenstate modes across the entire Bloch band in structures possessing mirror symmetry. The conditions to create these modes and thereby to lead to a totally transparent band phenomenon are discussed.Comment: To be published in Phys. Rev.

    Renormalization and blow up for charge one equivariant critical wave maps

    Full text link
    We prove the existence of equivariant finite time blow up solutions for the wave map problem from 2+1 dimensions into the 2-sphere. These solutions are the sum of a dynamically rescaled ground-state harmonic map plus a radiation term. The local energy of the latter tends to zero as time approaches blow up time. This is accomplished by first "renormalizing" the rescaled ground state harmonic map profile by solving an elliptic equation, followed by a perturbative analysis

    Characteristics of bound modes in coupled dielectric waveguides containing negative index media

    Get PDF
    We investigate the characteristics of guided wave modes in planar coupled waveguides. In particular, we calculate the dispersion relations for TM modes in which one or both of the guiding layers consists of negative index media (NIM)-where the permittivity and permeability are both negative. We find that the Poynting vector within the NIM waveguide axis can change sign and magnitude, a feature that is reflected in the dispersion curves

    RBF neural net based classifier for the AIRIX accelerator fault diagnosis

    Get PDF
    The AIRIX facility is a high current linear accelerator (2-3.5kA) used for flash-radiography at the CEA of Moronvilliers France. The general background of this study is the diagnosis and the predictive maintenance of AIRIX. We will present a tool for fault diagnosis and monitoring based on pattern recognition using artificial neural network. Parameters extracted from the signals recorded on each shot are used to define a vector to be classified. The principal component analysis permits us to select the most pertinent information and reduce the redundancy. A three layer Radial Basis Function (RBF) neural network is used to classify the states of the accelerator. We initialize the network by applying an unsupervised fuzzy technique to the training base. This allows us to determine the number of clusters and real classes, which define the number of cells on the hidden and output layers of the network. The weights between the hidden and the output layers, realising the non-convex union of the clusters, are determined by a least square method. Membership and ambiguity rejection enable the network to learn unknown failures, and to monitor accelerator operations to predict future failures. We will present the first results obtained on the injector.Comment: 3 pages, 4 figures, LINAC'2000 conferenc

    Continuations of the nonlinear Schr\"odinger equation beyond the singularity

    Full text link
    We present four continuations of the critical nonlinear \schro equation (NLS) beyond the singularity: 1) a sub-threshold power continuation, 2) a shrinking-hole continuation for ring-type solutions, 3) a vanishing nonlinear-damping continuation, and 4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that leads to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity{\rev{expanding core}} after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time TcT_c, the phase of the singular core is only determined up to multiplication by eiθe^{i\theta}. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation t→−tt\rightarrow-t and ψ→ψ∗\psi\rightarrow\psi^\ast, the singular core of the weak solution is symmetric with respect to TcT_c. Therefore, the sub-threshold power and the{\rev{shrinking}}-hole continuations are symmetric with respect to TcT_c, but continuations which are based on perturbations of the NLS equation are generically asymmetric
    • …
    corecore