1,890 research outputs found
Inhomogeneous Nuclear Spin Flips
We discuss a feedback mechanism between electronic states in a double quantum
dot and the underlying nuclear spin bath. We analyze two pumping cycles for
which this feedback provides a force for the Overhauser fields of the two dots
to either equilibrate or diverge. Which of these effects is favored depends on
the g-factor and Overhauser coupling constant A of the material. The strength
of the effect increases with A/V_x, where V_x is the exchange matrix element,
and also increases as the external magnetic field B_{ext} decreases.Comment: 5 pages, 4 figures (jpg
From Disordered Crystal to Glass: Exact Theory
We calculate thermodynamic properties of a disordered model insulator,
starting from the ideal simple-cubic lattice () and increasing the
disorder parameter to . As in earlier Einstein- and Debye-
approximations, there is a phase transition at . For the
low-T heat-capacity whereas for , . The van
Hove singularities disappear at {\em any finite }. For we discover
novel {\em fixed points} in the self-energy and spectral density of this model
glass.Comment: Submitted to Phys. Rev. Lett., 8 pages, 4 figure
Relationship between long time scales and the static free-energy in the Hopfield model
The Glauber dynamics of the Hopfield model at low storage level is
considered. We analytically derive the spectrum of relaxation times for large
system sizes. The longest time scales are gathered in families, each family
being in one to one correspondence with a stationary (not necessarily stable)
point of the static mean-field free-energy. Inside a family, the time scales
are given by the reciprocals (of the absolute values) of the eigenvalues of the
free-energy Hessian matrix.Comment: 5 pages RevTex file, accepted for publication in J.Phys.
A modified triplet-wave expansion method applied to the alternating Heisenberg chain
An alternative triplet-wave expansion formalism for dimerized spin systems is
presented, a modification of the 'bond operator' formalism of Sachdev and
Bhatt. Projection operators are used to confine the system to the physical
subspace, rather than constraint equations. The method is illustrated for the
case of the alternating Heisenberg chain, and comparisons are made with the
results of dimer series expansions and exact diagonalization. Some discussion
is included of the phenomenon of 'quasiparticle breakdown', as it applies to
the two-triplon bound states in this model.Comment: 16 pages, 12 figure
Summing the Instanton Series in N=2 Superconformal Large-N QCD
We consider the multi-instanton collective coordinate integration measure in
N=2 supersymmetric SU(N) gauge theory with N_F fundamental hypermultiplets. In
the large-N limit, at the superconformal point where N_F=2N and all VEVs are
turned off, the k-instanton moduli space collapses to a single copy of
AdS_5*S^1. The resulting k-instanton effective measure is proportional to
N^{1/2} g^4 Z_k^(6), where Z_k^(6) is the partition function of N=(1,0) SYM
theory in six dimensions reduced to zero dimensions. The multi-instanton can in
fact be summed in closed form. As a hint of an AdS/CFT duality, with the usual
relation between the gauge theory and string theory parameters, this precisely
matches the normalization of the charge-k D-instanton measure in type IIB
string theory compactified to six dimensions on K3 with a vanishing two-cycle.Comment: 12 pages, amslate
Excited Baryons in Large N_c QCD Revisited: The Resonance Picture Versus Single-Quark Excitations
We analyze excited baryon properties via a 1/N_c expansion from two
perspectives: as resonances in meson-nucleon scattering, and as single-quark
excitations in the context of a simple quark model. For both types of analysis
one can derive novel patterns of degeneracy that emerge as N_c --> \infty, and
that are shown to be compatible with one another. This helps justify the
single-quark excitation picture and may give some insight into its successes.
We also find that in the large N_c limit one of the S_{11} baryons does not
couple to the pi-N channel but couples to the eta-N channel. This is
empirically observed in the N(1535), which couples very weakly to the pi-N
channel and quite strongly to the eta-N channel. The comparatively strong
coupling of the N(1650) to the pi-N channel and weak coupling to eta-N channel
is also predicted. In the context of the simple quark model picture we
reproduce expressions for mixing angles that are accurate up to O(1/N_c)
corrections and are in good agreement with mixing angles extracted
phenomenologically.Comment: 13 pages, ReVTeX
Floating Phase in 1D Transverse ANNNI Model
To study the ground state of ANNNI chain under transverse field as a function
of frustration parameter and field strength , we present here
two different perturbative analyses. In one, we consider the (known) ground
state at and as the unperturbed state and treat an
increase of the field from 0 to coupled with an increase of
from 0.5 to as perturbation. The first order perturbation
correction to eigenvalue can be calculated exactly and we could conclude that
there are only two phase transition lines emanating from the point
, . In the second perturbation scheme, we consider the
number of domains of length 1 as the perturbation and obtain the zero-th order
eigenfunction for the perturbed ground state. From the longitudinal spin-spin
correlation, we conclude that floating phase exists for small values of
transverse field over the entire region intermediate between the ferromagnetic
phase and antiphase.Comment: 11 pages, 11 figure
Soliton quantization and internal symmetry
We apply the method of collective coordinate quantization to a model of
solitons in two spacetime dimensions with a global symmetry. In
particular we consider the dynamics of the charged states associated with
rotational excitations of the soliton in the internal space and their
interactions with the quanta of the background field (mesons). By solving a
system of coupled saddle-point equations we effectively sum all tree-graphs
contributing to the one-point Green's function of the meson field in the
background of a rotating soliton. We find that the resulting one-point function
evaluated between soliton states of definite charge exhibits a pole on
the meson mass shell and we extract the corresponding S-matrix element for the
decay of an excited state via the emission of a single meson using the standard
LSZ reduction formula. This S-matrix element has a natural interpretation in
terms of an effective Lagrangian for the charged soliton states with an
explicit Yukawa coupling to the meson field. We calculate the leading-order
semi-classical decay width of the excited soliton states discuss the
consequences of these results for the hadronic decay of the resonance
in the Skyrme model.Comment: 23 pages, LA-UR-93-299
Bohr-Sommerfeld quantization of spin Hamiltonians
The Bohr-Sommerfeld rule for a spin system is obtained, including the first
quantum corrections. The rule applies to both integer and half-integer spin,
and respects Kramers degeneracy for time-reversal invariant systems. It is
tested for various models, in particular the Lipkin-Meshkov-Glick model, and
found to agree very well with exact results.Comment: Revtex 4, no figures, 1 tabl
- …
