224 research outputs found
Potato response to potassium application rates and timing under semi-arid conditions
A two-year experiment (2004-2005) was conducted at Tal Amara Research Station in the Bekaa Valley of Lebanon to evaluate the influence of progressive application of K rates and application timing on yield, yield components and tuber quality of potato (Solanum tuberosum L. cv. Agria). Four levels of potassium (0 (K0), 75 (K75), 150 (K150), and 225 (K225) kg K2O ha-1) and two application timings (tuber initiation and tuber bulking stages) were used in a split-plot design. The progressive application of potassium fertilizer from 0 to 225 kg K2O ha-1 significantly affected the yield and yield components of potato. In both years, small grade tubers and aggregate tuber yield increased quadratically with increasing K application rates up to 150 kg K2O ha-1, reaching a plateau thereafter, showing luxury consumption of the nutrient at 225 kg K2O ha-1. In 2004 when averaged over K application rates, large and medium grade tubers and aggregated tuber yield were 120%, 22%, and 12% greater, respectively, with K application at tuber bulking than at tuber initiation. A similar trend was also observed in 2005, when the small grade tubers and aggregate tuber yield were 20% and 12% higher, respectively, with K application at tuber bulking than at tuber initiation stage. Finally, no significant difference among treatments was observed for tuber dry matter (avg. 19.8%) and specific gravity (1.08 g cm-3)
Measuring CMAPs in addition to MEPs can distinguish peripheral ischemia from spinal cord ischemia during endovascular aortic repair
Objective: Spinal cord injury is a devastating complication after endovascular thoracic and thoracoabdominal aneurysm repair (EVAR). Motor evoked potentials (MEPs) can be monitored to detect spinal cord injury, but may also be affected by peripheral ischemia caused by femoral artery sheaths. We aimed to determine the incidence of peripheral ischemia during EVAR, and whether central and peripheral ischemia can be distinguished using compound muscle action potentials (CMAPs).Methods: We retrospectively analyzed all EVAR procedures between March 1st 2015 and January 1st 2020 during which MEPs were monitored. Peripheral ischemia was defined as both a reduction in MEP amplitudes reversed by removing the femoral sheaths and no clinical signs of immediate post-procedural paraparesis. All other MEP decreases were defined as central ischemia.Results: A significant MEP decrease occurred in 14/27 (52%) of all procedures. Simultaneous CMAP amplitude reduction was observed in 7/8 (88%) of procedures where peripheral ischemia occurred, and never in procedures with central ischemia.Conclusions: MEP reductions due to peripheral ischemia are common during EVAR. A MEP-reduction without a CMAP decrease indicates central ischemia.Significance: CMAP measurements can help to distinguish central from peripheral ischemia, potentially reducing the chance of misinterpreting of MEP amplitude declines as centrally mediated, without affecting sensitivity. (C) 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V.Cardiovascular Aspects of Radiolog
A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton
Wiskott-Aldrich syndrome (WAS) is associated with mutations in the WAS protein (WASp), which plays a critical role in the initiation of T cell receptor-driven (TCR-driven) actin polymerization. The clinical phenotype of WAS includes susceptibility to infection, allergy, autoimmunity, and malignancy and overlaps with the symptoms of dedicator of cytokinesis 8 (DOCK8) deficiency, suggesting that the 2 syndromes share common pathogenic mechanisms. Here, we demonstrated that the WASpinteracting protein (WIP) bridges DOCK8 to WASp and actin in T cells. We determined that the guanine nucleotide exchange factor activity of DOCK8 is essential for the integrity of the subcortical actin cytoskeleton as well as for TCR-driven WASp activation, F-actin assembly, immune synapse formation, actin foci formation, mechanotransduction, T cell transendothelial migration, and homing to lymph nodes, all of which also depend on WASp. These results indicate that DOCK8 and WASp are in the same signaling pathway that links TCRs to the actin cytoskeleton in TCR-driven actin assembly. Further, they provide an explanation for similarities in the clinical phenotypes of WAS and DOCK8 deficiency
A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton
Wiskott-Aldrich syndrome (WAS) is associated with mutations in the WAS protein (WASp), which plays a critical role in the initiation of T cell receptor–driven (TCR-driven) actin polymerization. The clinical phenotype of WAS includes susceptibility to infection, allergy, autoimmunity, and malignancy and overlaps with the symptoms of dedicator of cytokinesis 8 (DOCK8) deficiency, suggesting that the 2 syndromes share common pathogenic mechanisms. Here, we demonstrated that the WASp-interacting protein (WIP) bridges DOCK8 to WASp and actin in T cells. We determined that the guanine nucleotide exchange factor activity of DOCK8 is essential for the integrity of the subcortical actin cytoskeleton as well as for TCR-driven WASp activation, F-actin assembly, immune synapse formation, actin foci formation, mechanotransduction, T cell transendothelial migration, and homing to lymph nodes, all of which also depend on WASp. These results indicate that DOCK8 and WASp are in the same signaling pathway that links TCRs to the actin cytoskeleton in TCR-driven actin assembly. Further, they provide an explanation for similarities in the clinical phenotypes of WAS and DOCK8 deficiency.United States. Public Health Service (RO1AI114588)United States. Public Health Service (K08AI114968
Distribution of cytochrome P450 2C, 2E1, 3A4, and 3A5 in human colon mucosa
BACKGROUND: Despite the fact that the alimentary tract is part of the body's first line of defense against orally ingested xenobiotica, little is known about the distribution and expression of cytochrome P450 (CYP) enzymes in human colon. Therefore, expression and protein levels of four representative CYPs (CYP2C(8), CYP2E1, CYP3A4, and CYP3A5) were determined in human colon mucosa biopsies obtained from ascending, descending and sigmoid colon. METHODS: Expression of CYP2C, CYP2E1, CYP3A4, and CYP3A5 mRNA in colon mucosa was determined by RT-PCR. Protein concentration of CYPs was determined using Western blot methods. RESULTS: Extensive interindividual variability was found for the expression of most of the genes. However, expression of CYP2C mRNA levels were significantly higher in the ascending colon than in the sigmoid colon. In contrast, mRNA levels of CYP2E1 and CYP3A5 were significantly lower in the ascending colon in comparison to the descending and sigmoid colon. In sigmoid colon protein levels of CYP2C8 were significantly higher by ~73% than in the descending colon. In contrast, protein concentration of CYP2E1 was significantly lower by ~81% in the sigmoid colon in comparison to the descending colon. CONCLUSION: The current data suggest that the expression of CYP2C, CYP2E1, and CYP3A5 varies in different parts of the colon
Wnt/β-Catenin Signaling Pathway Is a Direct Enhancer of Thyroid Transcription Factor-1 in Human Papillary Thyroid Carcinoma Cells
The Wnt/β-catenin signaling pathway is involved in the normal development of thyroid gland, but its disregulation provokes the appearance of several types of cancers, including papillary thyroid carcinomas (PTC) which are the most common thyroid tumours. The follow-up of PTC patients is based on the monitoring of serum thyroglobulin levels which is regulated by the thyroid transcription factor 1 (TTF-1): a tissue-specific transcription factor essential for the differentiation of the thyroid. We investigated whether the Wnt/β-catenin pathway might regulate TTF-1 expression in a human PTC model and examined the molecular mechanisms underlying this regulation. Immunofluorescence analysis, real time RT-PCR and Western blot studies revealed that TTF-1 as well as the major Wnt pathway components are co-expressed in TPC-1 cells and human PTC tumours. Knocking-down the Wnt/β-catenin components by siRNAs inhibited both TTF-1 transcript and protein expression, while mimicking the activation of Wnt signaling by lithium chloride induced TTF-1 gene and protein expression. Functional promoter studies and ChIP analysis showed that the Wnt/β-catenin pathway exerts its effect by means of the binding of β-catenin to TCF/LEF transcription factors on the level of an active TCF/LEF response element at [−798, −792 bp] in TTF-1 promoter. In conclusion, we demonstrated that the Wnt/β-catenin pathway is a direct and forward driver of the TTF-1 expression. The localization of TCF-4 and TTF-1 in the same area of PTC tissues might be of clinical relevance, and justifies further examination of these factors in the papillary thyroid cancers follow-up
Mitochondrial Superoxide Contributes to Blood Flow and Axonal Transport Deficits in the Tg2576 Mouse Model of Alzheimer's Disease
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive decline in cognitive functions and the deposition of aggregated amyloid beta (Abeta) into senile plaques and the protein tau into tangles. In addition, a general state of oxidation has long been known to be a major hallmark of the disease. What is not known however, are the mechanisms by which oxidative stress contributes to the pathology of AD.In the current study, we used a mouse model of AD and genetically boosted its ability to quench free radicals of specific mitochondrial origin. We found that such manipulation conferred to the AD mice protection against vascular as well as neuronal deficits that typically affect them. We also found that the vascular deficits are improved via antioxidant modulation of the endothelial nitric oxide synthase, an enzyme primarily responsible for the production of nitric oxide, while neuronal deficits are improved via modulation of the phosphorylation status of the protein tau, which is a neuronal cytoskeletal stabilizer.These findings directly link free radicals of specific mitochondrial origin to AD-associated vascular and neuronal pathology
Bim Nuclear Translocation and Inactivation by Viral Interferon Regulatory Factor
Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of the host cell. Human herpesvirus 8 (HHV-8) uses several strategies to block the host's innate antiviral defenses via interference with interferon and apoptotic signaling. Contributors include the four viral interferon regulatory factors (vIRFs 1–4), which function in dominant negative fashion to block cellular IRF activities in addition to targeting IRF signaling-induced proteins such as p53 and inhibiting other inducers of apoptosis such as TGFβ receptor-activated Smad transcription factors. Here we identify direct targeting by vIRF-1 of BH3-only pro-apoptotic Bcl-2 family member Bim, a key negative regulator of HHV-8 replication, to effect its inactivation via nuclear translocation. vIRF-1-mediated relocalization of Bim was identified in transfected cells, by both immunofluorescence assay and western analysis of fractionated cell extracts. Also, co-localization of vIRF-1 and Bim was detected in nuclei of lytically infected endothelial cells. In vitro co-precipitation assays using purified vIRF-1 and Bim revealed direct interaction between the proteins, and Bim-binding residues of vIRF-1 were mapped by deletion and point mutagenesis. Generation and experimental utilization of Bim-refractory vIRF-1 variants revealed the importance of vIRF-1:Bim interaction, specifically, in pro-replication and anti-apoptotic activity of vIRF-1. Furthermore, blocking of the interaction with cell-permeable peptide corresponding to the Bim-binding region of vIRF-1 confirmed the relevance of vIRF-1:Bim association to vIRF-1 pro-replication activity. To our knowledge, this is the first report of an IRF protein that interacts with a Bcl-2 family member and of nuclear sequestration of Bim or any other member of the family as a means of inactivation. The data presented reveal a novel mechanism utilized by a virus to control replication-induced apoptosis and suggest that inhibitory targeting of vIRF-1:Bim interaction may provide an effective antiviral strategy
Comprehensive Genetic Results for Primary Immunodeficiency Disorders in a Highly Consanguineous Population
Objective: To present the genetic causes of patients with primary immune deficiencies (PIDs) in Kuwait between 2004 and 2017.Methods: The data was obtained from the Kuwait National Primary Immunodeficiency Disorders Registry. Genomic DNA from patients with clinical and immunological features of PID was sequenced using Sanger sequencing (SS), next generation sequencing (NGS) of targeted genes, whole exome sequencing (WES), and/or whole genome sequencing (WGS). Functional assays were utilized to assess the biologic effect of identified variants. Fluorescence in situ hybridization (FISH) for 22q11.2 deletion and genomic hybridizations arrays were performed when thymic defects were suspected.Results: A total of 264 patients were registered during the study period with predominance of patients with immunodeficiencies affecting cellular and humoral immunity (35.2%), followed by combined immunodeficiencies with associated syndromic features (24%). Parental consanguinity and family history suggestive of PID were reported in 213 (81%) and 145 patients (55%), respectively. Genetic testing of 206 patients resulted in a diagnostic yield of 70%. Mutations were identified in 46 different genes and more than 90% of the reported genetic defects were transmitted by in an autosomal recessive pattern. The majority of the mutations were missense mutations (57%) followed by deletions and frame shift mutations. Five novel disease-causing genes were discovered.Conclusions: Genetic testing should be an integral part in the management of primary immunodeficiency patients. This will help the delivery of precision medicine and facilitate proper genetic counseling. Studying inbred populations using sophisticated diagnostic methods can allow better understanding of the genetics of primary immunodeficiency disorders
The influence of tumor size and environment on gene expression in commonly used human tumor lines
BACKGROUND: The expression profiles of solid tumor models in rodents have been only minimally studied despite their extensive use to develop anticancer agents. We have applied RNA expression profiling using Affymetrix U95A GeneChips to address fundamental biological questions about human tumor lines. METHODS: To determine whether gene expression changed significantly as a tumor increased in size, we analyzed samples from two human colon carcinoma lines (Colo205 and HCT-116) at three different sizes (200 mg, 500 mg and 1000 mg). To investigate whether gene expression was influenced by the strain of mouse, tumor samples isolated from C.B-17 SCID and Nu/Nu mice were also compared. Finally, the gene expression differences between tissue culture and in vivo samples were investigated by comparing profiles from lines grown in both environments. RESULTS: Multidimensional scaling and analysis of variance demonstrated that the tumor lines were dramatically different from each other and that gene expression remained constant as the tumors increased in size. Statistical analysis revealed that 63 genes were differentially expressed due to the strain of mouse the tumor was grown in but the function of the encoded proteins did not link to any distinct biological pathways. Hierarchical clustering of tissue culture and xenograft samples demonstrated that for each individual tumor line, the in vivo and in vitro profiles were more similar to each other than any other profile. We identified 36 genes with a pattern of high expression in xenograft samples that encoded proteins involved in extracellular matrix, cell surface receptors and transcription factors. An additional 17 genes were identified with a pattern of high expression in tissue culture samples and encoded proteins involved in cell division, cell cycle and RNA production. CONCLUSIONS: The environment a tumor line is grown in can have a significant effect on gene expression but tumor size has little or no effect for subcutaneously grown solid tumors. Furthermore, an individual tumor line has an RNA expression pattern that clearly defines it from other lines even when grown in different environments. This could be used as a quality control tool for preclinical oncology studies
- …