39 research outputs found

    Influence of green tea consumption on endoxifen steady-state concentration in breast cancer patients treated with tamoxifen

    Get PDF
    Background: Many cancer patients use additional herbs or supplements in combination with their anti-cancer therapy. Green tea—active ingredient epigallocatechin-3-gallate (EGCG)—is one of the most commonly used dietary supplements among breast cancer patients. EGCG may alter the metabolism of tamoxifen. Therefore, the aim of this study was to investigate the influence of green tea supplements on the pharmacokinetics of endoxifen; the most relevant active metabolite of tamoxifen. Methods: In this single-center, randomized cross-over trial, effects of green tea capsules on endoxifen levels were evaluated. Patients treated with tamoxifen for at least 3 months were eligible for this study. After inclusion, patients were consecutively treated with tamoxifen monotherapy for 28 days and in combination with green tea supplements (1 g twice daily; containing 300 mg EGCG) for 14 days (or vice versa). Blood samples were collected on the last day of monotherapy or combination therapy. Area under the curve (AUC0–24h), maximum concentration (Cmax) and minimum concentration (Ctrough) were obtained from individual plasma concentration–time curves. Results: No difference was found in geometric mean endoxifen AUC0–24h in the period with green tea versus tamoxifen monotherapy (− 0.4%; 95% CI − 8.6 to 8.5%; p = 0.92). Furthermore, no differences in Cmax (− 2.8%; − 10.6 to 5.6%; p = 0.47) nor Ctrough (1.2%; − 7.3 to 10.5%; p = 0.77) were found. Moreover, no severe toxicity was reported during the whole study period. Conclusions: This study demonstrated the absence of a pharmacokinetic interaction between green tea supplements and tamoxifen. Therefore, the use of green tea by patients with tamoxifen does not have to be discouraged

    Imaging myocardial carcinoid with T2-STIR CMR

    Get PDF
    We used T2-STIR (Short Tau Inversion Recovery) cardiovascular magnetic resonance to demonstrate carcinoid tumor metastases to the heart and liver in a 64-year-old woman with a biopsy-proven ileal carcinoid tumor who was referred because of an abnormal echocardiogram

    Plasma CCN2/connective tissue growth factor is associated with right ventricular dysfunction in patients with neuroendocrine tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carcinoid heart disease, a known complication of neuroendocrine tumors, is characterized by right heart fibrotic lesions. Carcinoid heart disease has traditionally been defined by the degree of valvular involvement. Right ventricular (RV) dysfunction due to mural involvement may also be a manifestation. Connective tissue growth factor (CCN2) is elevated in many fibrotic disorders. Its role in carcinoid heart disease is unknown. We sought to investigate the relationship between plasma CCN2 and valvular and mural involvement in carcinoid heart disease.</p> <p>Methods</p> <p>Echocardiography was performed in 69 patients with neuroendocrine tumors. RV function was assessed using tissue Doppler analysis of myocardial systolic strain. Plasma CCN2 was analyzed using an enzyme-linked immunosorbent assay. Mann-Whitney U, Kruskal-Wallis, Chi-squared and Fisher's exact tests were used to compare groups where appropriate. Linear regression was used to evaluate correlation.</p> <p>Results</p> <p>Mean strain was -21% ± 5. Thirty-three patients had reduced RV function (strain > -20%, mean -16% ± 3). Of these, 8 had no or minimal tricuspid and/or pulmonary regurgitation (TR/PR). Thirty-six patients had normal or mildly reduced RV function (strain ≤ -20%, mean -25% ± 3). There was a significant inverse correlation between RV function and plasma CCN2 levels (r = 0.47, p < 0.001). Patients with reduced RV function had higher plasma CCN2 levels than those with normal or mildly reduced RV function (p < 0.001). Plasma CCN2 ≥ 77 μg/L was an independent predictor of reduced RV function (odds ratio 15.36 [95% CI 4.15;56.86]) and had 88% sensitivity and 69% specificity for its detection (p < 0.001). Plasma CCN2 was elevated in patients with mild or greater TR/PR compared to those with no or minimal TR/PR (p = 0.008), with the highest levels seen in moderate to severe TR/PR (p = 0.03).</p> <p>Conclusions</p> <p>Elevated plasma CCN2 levels are associated with RV dysfunction and valvular regurgitation in NET patients. CCN2 may play a role in neuroendocrine tumor-related cardiac fibrosis and may serve as a marker of its earliest stages.</p

    A novel approach in the treatment of neuroendocrine gastrointestinal tumors: Additive antiproliferative effects of interferon-γ and meta-iodobenzylguanidine

    Get PDF
    BACKGROUND: Therapeutic options to effectively inhibit growth and spread of neuroendocrine gastrointestinal tumors are still limited. As both meta-iodobenzylguanidine (MIBG) and interferon-γ (IFNγ) cause antineoplastic effects in neuroendocrine gastrointestinal tumor cells, we investigated the antiproliferative effects of the combination of IFNγ and non-radiolabeled MIBG in neuroendocrine gut STC-1 and pancreatic carcinoid BON tumor cells. METHODS AND RESULTS: IFNγ receptors were expressed in both models. IFNγ dose- and time-dependently inhibited the growth of both STC-1 and of BON tumor cells with IC(50)-values of 95 ± 15 U/ml and 135 ± 10 U/ml, respectively. Above 10 U/ml IFNγ induced apoptosis-specific caspase-3 activity in a time-dependent manner in either cell line and caused a dose-dependent arrest in the S-phase of the cell cycle. Furthermore, IFNγ induced cytotoxic effects in NE tumor cells. The NE tumor-targeted drug MIBG is selectively taken up via norepinephrine transporters, thereby specifically inhibiting growth in NE tumor cells. Intriguingly, IFNγ treatment induced an upregulation of norepinephrine transporter expression in neuroendocrine tumors cells, as determined by semi-quantitative RT-PCR. Co-application of sub-IC(50 )concentrations of IFNγ and MIBG led to additive growth inhibitory effects, which were mainly due to increased cytotoxicity and S-phase arrest of the cell cycle. CONCLUSION: Our data show that IFNγ exerts antiproliferative effects on neuroendocrine gastrointestinal tumor cells by inducing cell cycle arrest, apoptosis and cytotoxicity. The combination of IFNγ with the NE tumor-targeted agent MIBG leads to effective growth control at reduced doses of either drug. Thus, the administration of IFNγ alone and more so, in combination with MIBG, is a promising novel approach in the treatment of neuroendocrine gastrointestinal tumors

    Carcinoid Tumor

    No full text
    corecore