1,116 research outputs found
Universal Robotic Gripper based on the Jamming of Granular Material
Gripping and holding of objects are key tasks for robotic manipulators. The
development of universal grippers able to pick up unfamiliar objects of widely
varying shape and surface properties remains, however, challenging. Most
current designs are based on the multi-fingered hand, but this approach
introduces hardware and software complexities. These include large numbers of
controllable joints, the need for force sensing if objects are to be handled
securely without crushing them, and the computational overhead to decide how
much stress each finger should apply and where. Here we demonstrate a
completely different approach to a universal gripper. Individual fingers are
replaced by a single mass of granular material that, when pressed onto a target
object, flows around it and conforms to its shape. Upon application of a vacuum
the granular material contracts and hardens quickly to pinch and hold the
object without requiring sensory feedback. We find that volume changes of less
than 0.5% suffice to grip objects reliably and hold them with forces exceeding
many times their weight. We show that the operating principle is the ability of
granular materials to transition between an unjammed, deformable state and a
jammed state with solid-like rigidity. We delineate three separate mechanisms,
friction, suction and interlocking, that contribute to the gripping force.
Using a simple model we relate each of them to the mechanical strength of the
jammed state. This opens up new possibilities for the design of simple, yet
highly adaptive systems that excel at fast gripping of complex objects.Comment: 10 pages, 7 figure
Recommended from our members
Kalapuya brunnea gen. & sp. nov. and its relationship to the other sequestrate genera in Morchellaceae
Kalapuya is described as a new, monotypic truffle genus in the Morchellaceae known only from the Pacific northwestern United States. Its relationship to other hypogeous genera within Morchellaceae is explored by phylogenetic analysis of the ribosomal LSU and EF1α protein coding region. The type species, K. brunnea, occurs in Douglas-fir forests up to about 50 y old on the west slope of the Cascade Range in Oregon and in the Coastal Ranges of Oregon and northern California. It has a roughened, warty, reddish brown to brown peridium, a solid whitish gleba that develops grayish brown mottling as the spores mature, and produces a cheesy-garlicky odor at maturity. Its smooth, ellipsoid spores resemble those of Morchella spp. but are much larger. The four hypogeous genera known in the Morchellaceae, Kalapuya, Fischerula, Imaia and Leucangium, are distinct from the epigeous genera Morchella and Verpa, but it is uncertain whether they resulted from a single transition to a hypogeous fruiting habit or from multiple independent transitions. Kalapuya, locally known as the Oregon brown truffle, has been commercially harvested for culinary use.Keywords: LSU rDNA, taxonomy, Pezizales, EF1α, Douglas-fir, Ascomycota, Fischerula, Morchellaceae, Leucangium, hypogeous fungus, truffl
Force-velocity-power and Force-pCa Relationships of Human Soleus Fibers After 17 Days of Bed Rest
Soleus muscle fibers from the rat display a reduction in peak power and Ca2+ sensitivity after hindlimb suspension. To examine human responses to non-weight bearing, we obtained soleus biopsies from eight adult men before and immediately after 17 days of bed rest (BR). Single chemically skinned fibers were mounted between a force transducer and a servo-controlled position motor and activated with maximal (isotonic properties) and/or submaximal (Ca2+ sensitivity) levels of free Ca2+. Gel electrophoresis indicated that all pre- and post-BR fibers expressed type I myosin heavy chain. Post-BR fibers obtained from one subject displayed increases in peak power and Ca2+ sensitivity. In contrast, post-BR fibers obtained from the seven remaining subjects showed an average 11% reduction in peak power (P \u3c 0.05), with each individual displaying a 7–27% reduction in this variable. Post-BR fibers from these subjects were smaller in diameter and produced 21% less force at the shortening velocity associated with peak power. However, the shortening velocity at peak power output was elevated 13% in the post-BR fibers, which partially compensated for their lower force. Post-BR fibers from these same seven subjects also displayed a reduced sensitivity to free Ca2+(P \u3c 0.05). These results indicate that the reduced functional capacity of human lower limb extensor muscles after BR may be in part caused by alterations in the cross-bridge mechanisms of contraction
Modeling mycorrhizal fungi dispersal by the mycophagous swamp wallaby (Wallabia bicolor)
Despite the importance of mammal-fungal interactions, tools to estimate the mammal-assisted dispersal distances of fungi are lacking. Many mammals actively consume fungal fruiting bodies, the spores of which remain viable after passage through their digestive tract. Many of these fungi form symbiotic relationships with trees and provide an array of other key ecosystem functions. We present a flexible, general model to predict the distance a mycophagous mammal would disperse fungal spores. We modelled the probability of spore dispersal by combining animal movement data from GPS-telemetry with data on spore gut-retention time. We test this model using an exemplar generalist mycophagist, the swamp wallaby (Wallabia bicolor). We show that swamp wallabies disperse fungal spores hundreds of metres—and occasionally up to 1265 m—from the point of consumption, distances that are ecologically significant for many mycorrhizal fungi. In addition to highlighting the ecological importance of swamp wallabies as dispersers of mycorrhizal fungi in eastern Australia, our simple modelling approach provides a novel and effective way of empirically describing spore dispersal by a mycophagous animal. This approach is applicable to the study of other animal-fungi interactions in other ecosystems.Funding provided by: Hermon Slade FoundationCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100001109Award Number: HSF08-6Funding provided by: Australian Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000923Award Number: DP0557022Methods are described in the published article
Glasslike Arrest in Spinodal Decomposition as a Route to Colloidal Gelation
Colloid-polymer mixtures can undergo spinodal decomposition into colloid-rich
and colloid-poor regions. Gelation results when interconnected colloid-rich
regions solidify. We show that this occurs when these regions undergo a glass
transition, leading to dynamic arrest of the spinodal decomposition. The
characteristic length scale of the gel decreases with increasing quench depth,
and the nonergodicity parameter exhibits a pronounced dependence on scattering
vector. Mode coupling theory gives a good description of the dynamics, provided
we use the full static structure as input.Comment: 14 pages, 4 figures; replaced with published versio
Recommended from our members
The enigmatic truffle Fevansia aurantiaca is an ectomycorrhizal member of the Albatrellus lineage
Fevansia aurantiaca is an orange-colored truffle that has been collected infrequently in the Pacific Northwest of the USA. This sequestrate, hypogeous fungus was originally thought to be related to the genera Rhizopogon or Alpova in the Boletales, but the large, inflated cells in the trama and the very pale spore mass easily segregated it from these genera. To date, no molecular phylogenetic studies have determined its closest relatives. F. aurantiaca was originally discovered in leaf litter beneath Pinaceae, leading Trappe and Castellano (Mycotaxon 75:153–179, 2000) to suggest that it is an ectomycorrhizal symbiont of various members of the Pinaceae. However, without direct ecological or phylogenetic data, it is impossible to confirm the trophic mode of this truffle species. In this study, we combined phylogenetic analysis of the ITS and 28S ribosomal DNA with data on microscopic morphology to determine that F. aurantiaca is a member of the Albatrellus ectomycorrhizal lineage (Albatrellaceae, Russulales).Keywords: Albatrellaceae, Russulales, Albatrellus, Sequestrate fungi, Truffles, Ectomycorrhiz
Studies on the clinical significance of nonesterified and total cholesterol in urine
Gas-liquid chromatographic determinations of nonesterified and total urinary cholesterol were performed in 137 normals, 264 patients with various internal diseases without evidence of neoplasias or diseases of the kidney or urinary tract, 497 patients with malignancies and 236 patients with diseases of the kidney, urinary tract infections or prostatic adenoma with residual urine. A normal range (mean±2 SD) of 0.2–2.2 mg/24 hours nonesterified cholesterol (NEC) and of 0.3–3.0 mg/24 hours total cholesterol (TC) was calculated.
Values of urinary cholesterol excretion were independent of age and sex and did not correlate with cholesterol levels in plasma. Patients with various internal diseases, without evidence of neoplasias nor diseases of the kidney or obstruction of the urinary tract, showed normal urinary cholesterol excretions, as did patients with infections of the urinary tract.
However, elevated urinary cholesterol was found in patients with diseases of the kidney or urinary tract obstruction (prostatic adenoma with residual urine), malignant diseases of the urogenital tract and metastasing carcinoma of the breast. In patients with other malignant diseases urinary cholesterol was usually normal.
Lesions of the urothelial cell membranes are considered to be the most likely cause of urinary cholesterol hyperexcretion. The clinical value of urinary cholesterol determinations as a possible screening test for urogenital carcinomas in unselected populations is limited by lacking specificity, expensive methodology and low prevalence of the mentioned carcinomas, although elevated urinary cholesterol excretions have been observed in early clinical stages of urogenital cancers
Influence of acetaminophen and ibuprofen on in vivo patellar tendon adaptations to knee extensor resistance exercise in older adults
Millions of older individuals consume acetaminophen or ibuprofen daily and these same individuals are encouraged to participate in resistance training. Several in vitro studies suggest that cyclooxygenase-inhibiting drugs can alter tendon metabolism and may influence adaptations to resistance training. Thirty-six individuals were randomly assigned to a placebo (67 ± 2 yr old), acetaminophen (64 ± 1 yr old; 4,000 mg/day), or ibuprofen (64 ± 1 yr old; 1,200 mg/day) group in a double-blind manner and completed 12 wk of knee extensor resistance training. Before and after training in vivo patellar tendon properties were assessed with MRI [cross-sectional area (CSA) and signal intensity] and ultrasonography of patellar tendon deformation coupled with force measurements to obtain stiffness, modulus, stress, and strain. Mean patellar tendon CSA was unchanged (P > 0.05) with training in the placebo group, and this response was not influenced with ibuprofen consumption. Mean tendon CSA increased with training in the acetaminophen group (3%, P < 0.05), primarily due to increases in the mid (7%, P < 0.05) and distal (8%, P < 0.05) tendon regions. Correspondingly, tendon signal intensity increased with training in the acetaminophen group at the mid (13%, P < 0.05) and distal (15%, P = 0.07) regions. When normalized to pretraining force levels, patellar tendon deformation and strain decreased 11% (P < 0.05) and stiffness, modulus, and stress were unchanged (P > 0.05) with training in the placebo group. These responses were generally uninfluenced by ibuprofen consumption. In the acetaminophen group, tendon deformation and strain increased 20% (P < 0.05) and stiffness (−17%, P < 0.05) and modulus (−20%, P < 0.05) decreased with training. These data suggest that 3 mo of knee extensor resistance training in older adults induces modest changes in the mechanical properties of the patellar tendon. Over-the-counter doses of acetaminophen, but not ibuprofen, have a strong influence on tendon mechanical and material property adaptations to resistance training. These findings add to a growing body of evidence that acetaminophen has profound effects on peripheral tissues in humans
Generality of shear thickening in suspensions
Suspensions are of wide interest and form the basis for many smart fluids.
For most suspensions, the viscosity decreases with increasing shear rate, i.e.
they shear thin. Few are reported to do the opposite, i.e. shear thicken,
despite the longstanding expectation that shear thickening is a generic type of
suspension behavior. Here we resolve this apparent contradiction. We
demonstrate that shear thickening can be masked by a yield stress and can be
recovered when the yield stress is decreased below a threshold. We show the
generality of this argument and quantify the threshold in rheology experiments
where we control yield stresses arising from a variety of sources, such as
attractions from particle surface interactions, induced dipoles from applied
electric and magnetic fields, as well as confinement of hard particles at high
packing fractions. These findings open up possibilities for the design of smart
suspensions that combine shear thickening with electro- or magnetorheological
response.Comment: 11 pages, 9 figures, accepted for publication in Nature Material
- …