9,769 research outputs found

    Hard X‐ray polarimetry of solar flares with BATSE

    Get PDF
    We describe a technique for measuring the polarization of hard X‐rays from solar flares based on the angular distribution of that portion of the flux which is scattered off the top of the Earth’s atmosphere. The scattering cross section depends not only on the scatter angle itself, but on the orientation of the scatter angle with respect to the incident polarization vector. Consequently, the distribution of the observed albedo flux will depend on the direction and the polarization properties (i.e., the level of polarization and polarization angle) of the source. Since the albedo component can represent a relatively large fraction (up to 40%) of the direct source flux, there will generally be sufficient signal for making such a measurement. The sensitivity of this approach is therefore dictated by the effective area and the ability of a detector system to ‘image’ the albedo flux. The 4π coverage of the BATSE detectors on the Compton Gamma‐RayObservatory provides an opportunity to measure both the direct and the albedo flux from a given solar flare event. Although the BATSE design (with its large field‐of‐view for each detector) is not optimized for albedo polarimetry, we have nonetheless investigated the feasibility of this technique using BATSE data

    Analysing powers for the reaction n⃗p→ppπ−\vec{\rm n} {\rm p} \to {\rm p} {\rm p} \pi^{-} and for np elastic scattering from 270 to 570 MeV

    Full text link
    The analysing power of the reaction np→ppπ−{\rm n}{\rm p} \to {\rm p}{\rm p} \pi^{-} for neutron energies between threshold and 570 MeV has been determined using a transversely polarised neutron beam at PSI. The reaction has been studied in a kinematically complete measurement using a time-of-flight spectrometer with large acceptance. Analysing powers have been determined as a function of the c.m. pion angle in different regions of the proton-proton invariant mass. They are compared to other data from the reactions np→ppπ−{\rm n}{\rm p} \to {\rm p}{\rm p} \pi^{-} and pp→ppπ0{{\rm p}{\rm p} \to {\rm p}{\rm p} \pi^{0}}. The np elastic scattering analysing power was determined as a by-product of the measurements.Comment: 12 pages, 6 figures, subitted to EPJ-

    The reaction np→ppπ−{n} {p} \to {p} {p} \pi^{-} from threshold up to 570 MeV

    Full text link
    The reaction np→ppπ−{n} {p} \to {p} {p} \pi^{-} has been studied in a kinematically complete measurement with a large acceptance time-of-flight spectrometer for incident neutron energies between threshold and 570 MeV. The proton-proton invariant mass distributions show a strong enhancement due to the pp(1S0^{1}{S}_{0}) final state interaction. A large anisotropy was found in the pion angular distributions in contrast to the reaction pp→ppπ0{p}{p} \to {p}{p} \pi^{0}. At small energies, a large forward/backward asymmetry has been observed. From the measured integrated cross section σ(np→ppπ−)\sigma({n}{p} \to {\rm p}{p} \pi^{-}), the isoscalar cross section σ01\sigma_{01} has been extracted. Its energy dependence indicates that mainly partial waves with Sp final states contribute. Note: Due to a coding error, the differential cross sections dσ/dMpp{d \sigma}/{d M_{pp}} as shown in Fig. 9 are too small by a factor of two, and inn Table 3 the differential cross sections dσ/dΩπ∗{d \sigma}/{d \Omega_{\pi}^{*}} are too large by a factor of 10/2π10/2\pi. The integrated cross sections and all conclusions remain unchanged. A corresponding erratum has been submitted and accepted by European Physics Journal.Comment: 18 pages, 16 figure

    Using BATSE to measure gamma-ray burst polarization

    Get PDF
    We describe a technique for measuring the polarization of hard x-rays from γ-ray bursts based on the angular distribution of that portion of the flux which is scattered off the top of the Earth’s atmosphere. The scattering cross section depends not only on the scatter angle itself, but on the orientation of the scatter angle with respect to the incident polarization vector. Consequently, the distribution of the observed albedo flux will depend on the direction and the polarization properties (i.e., the level of polarization and polarization angle) of the source. Although the BATSE design (with its large field-of-view for each detector) is not optimized for albedo polarimetry, we have nonetheless investigated the feasibility of this technique using BATSE data

    New Exclusion Limits for the Search of Scalar and Pseudoscalar Axion-Like Particles from "Light Shining Through a Wall"

    Full text link
    Physics beyond the Standard Model predicts the possible existence of new particles that can be searched at the low energy frontier in the sub-eV range. The OSQAR photon regeneration experiment looks for "Light Shining through a Wall" from the quantum oscillation of optical photons into "Weakly Interacting Sub-eV Particles", such as axion or Axion-Like Particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2×14.32 \times 14.3 m. In 2014, this experiment has been run with an outstanding sensitivity, using an 18.5 W continuous wave laser emitting in the green at the single wavelength of 532 nm. No regenerated photons have been detected after the wall, pushing the limits for the existence of axions and ALPs down to an unprecedented level for such a type of laboratory experiment. The di-photon couplings of possible pseudo-scalar and scalar ALPs can be constrained in the nearly massless limit to be less than 3.5⋅10−83.5\cdot 10^{-8} GeV−1^{-1} and 3.2⋅10−83.2\cdot 10^{-8} GeV−1^{-1}, respectively, at 95% Confidence Level.Comment: 6 pages, 6 figure

    Physical Mechanisms for the Variable Spin-down of SGR 1900+14

    Get PDF
    We consider the physical implications of the rapid spindown of Soft Gamma Repeater 1900+14, and of the apparent "braking glitch", \Delta P/P = l x 10^-4, that was concurrent with the Aug. 27th giant flare. A radiation-hydrodynamical outflow associated with the flare could impart the required torque, but only if the dipole magnetic field is stronger than ~ 10^14 G and the outflow lasts longer and/or is more energetic than the observed X-ray flare. A positive period increment is also a natural consequence of a gradual, plastic deformation of the neutron star crust by an intense magnetic field, which forces the neutron superfluid to rotate more slowly than the crust. Sudden unpinning of the neutron vortex lines during the August 27th event would then induce a glitch opposite in sign to those observed in young pulsars, but of a much larger magnitude as a result of the slower rotation. The change in the persistent X-ray lightcurve following the August 27 event is ascribed to continued particle heating in the active region of that outburst. The enhanced X-ray output can be powered by a steady current flowing through the magnetosphere, induced by the twisting motion of the crust. The long term rate of spindown appears to be accelerated with respect to a simple magnetic dipole torque. Accelerated spindown of a seismically-active magnetar will occur when its persistent output of Alfven waves and particles exceeds its spindown luminosity. We suggest that SGRs experience some episodes of relative inactivity, with diminished spindown rates, and that such inactive magnetars are observed as Anomalous X-ray Pulsars (AXPs). The rapid reappearence of persistent X-ray emission following August 27 flare gives evidence against accretion-powered models.Comment: 24 pages, no figure

    Discovery of Pulsed X-ray Emission from the SMC Transient RX J0117.6-7330

    Get PDF
    We report on the detection of pulsed, broad-band, X-ray emission from the transient source RX J0117.6-7330. The pulse period of 22 seconds is detected by the ROSAT/PSPC instrument in a 1992 Sep 30 - Oct 2 observation and by the CGRO/BATSE instrument during the same epoch. Hard X-ray pulsations are detectable by BATSE for approximately 100 days surrounding the ROSAT observation (1992 Aug 28 - Dec 8). The total directly measured X-ray luminosity during the ROSAT observation is 1.0E38 (d/60 kpc)^2 ergs s-1. The pulse frequency increases rapidly during the outburst, with a peak spin-up rate of 1.2E-10 Hz s-1 and a total frequency change 1.8%. The pulsed percentage is 11.3% from 0.1-2.5 keV, increasing to at least 78% in the 20-70 keV band. These results establish RX J0117.6-7330 as a transient Be binary system.Comment: 17 pages, Latex, aasms, accepted for publication in ApJ Letter

    Search for weakly interacting sub-eV particles with the OSQAR laser-based experiment: results and perspectives

    Get PDF
    Recent theoretical and experimental studies highlight the possibility of new fundamental particle physics beyond the Standard Model that can be probed by sub-eV energy experiments. The OSQAR photon regeneration experiment looks for "Light Shining through a Wall" (LSW) from the quantum oscillation of optical photons into "Weakly Interacting Sub-eV Particles" (WISPs), like axion or axion-like particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2×14.32 \times 14.3 m. No excess of events has been detected over the background. The di-photon couplings of possible new light scalar and pseudo-scalar particles can be constrained in the massless limit to be less than 8.0×10−88.0\times10^{-8} GeV−1^{-1}. These results are very close to the most stringent laboratory constraints obtained for the coupling of ALPs to two photons. Plans for further improving the sensitivity of the OSQAR experiment are presented.Comment: 7 pages, 7 figure
    • 

    corecore