1,944 research outputs found

    Ternary and quaternary oxides of Bi, Sr, and Cu

    Get PDF
    Before the discovery of superconductivity in an oxide of Bi, Sr, and Cu, the system Bi-Sr-Cu-O had not been studied, although several solid phases had been identified in the two-component regions of the ternary system Bi2O3-SrO-CuO. The oxides Sr2CuO3, SrCu2O2, SrCuO2, and Bi2CuO4 were then well known and characterized, and the phase diagram of the binary system Bi2O3 -SrO had been established in the temperature range 620 to 1000 C. Besides nine solutions of compositions Bi(2-2x) Sr(x) O(3-2x) and different symmetries, this diagram includes three definite compounds of stoichiometries Bi(2)SrO4, Bi2Sr2O5, and Bi2Sr3O6 (x = 0.50, 0.67 and 0.75 respectively), only the second of which with known unit-cell of orthorhombic symmetry, dimensions (A) a = 14.293(2), b = 7.651(2), c = 6.172(1), and z = 4. The first superconducting oxide in the system Bi-Sr-Cu-O was initially formulated as Bi2Sr2Cu2O(7+x), with an orthorhombic unit-cell of parameters (A) a = 5.32, b = 26.6, c = 48.8. In a preliminary study the same oxide was formulated with half the copper content, Bi(2)Sr(2)CuO(6+x), and indexed its reflections assuming an orthorhombic unit-cell of dimensions (A) a = 5.390(2), b = 26.973(8), c = 24.69(4). Subsequent studies by diffraction techniques have confirmed the composition 2:2:1. A new family of oxygen-deficient perovskites, was characterized, after identifying by x ray diffraction the phases present in the products of thermal treatments of about 150 mixtures of analytical grade Bi2O3, Sr(OH)2-8H2O and CuO at different molar ratios. X ray diffraction data are presented for some other oxides of Bi and Sr, as well as for various quaternary oxides, among them an oxide of Bi, Sr, and Cu

    Microcanonical Analysis of Exactness of the Mean-Field Theory in Long-Range Interacting Systems

    Full text link
    Classical spin systems with nonadditive long-range interactions are studied in the microcanonical ensemble. It is expected that the entropy of such a system is identical to that of the corresponding mean-field model, which is called "exactness of the mean-field theory". It is found out that this expectation is not necessarily true if the microcanonical ensemble is not equivalent to the canonical ensemble in the mean-field model. Moreover, necessary and sufficient conditions for exactness of the mean-field theory are obtained. These conditions are investigated for two concrete models, the \alpha-Potts model with annealed vacancies and the \alpha-Potts model with invisible states.Comment: 23 pages, to appear in J. Stat. Phy

    Canonical Solution of Classical Magnetic Models with Long-Range Couplings

    Full text link
    We study the canonical solution of a family of classical n−vectorn-vector spin models on a generic dd-dimensional lattice; the couplings between two spins decay as the inverse of their distance raised to the power α\alpha, with α<d\alpha<d. The control of the thermodynamic limit requires the introduction of a rescaling factor in the potential energy, which makes the model extensive but not additive. A detailed analysis of the asymptotic spectral properties of the matrix of couplings was necessary to justify the saddle point method applied to the integration of functions depending on a diverging number of variables. The properties of a class of functions related to the modified Bessel functions had to be investigated. For given nn, and for any α\alpha, dd and lattice geometry, the solution is equivalent to that of the α=0\alpha=0 model, where the dimensionality dd and the geometry of the lattice are irrelevant.Comment: Submitted for publication in Journal of Statistical Physic

    Exporting and capital investment: On the strategic behavior of exporters.

    Get PDF
    By exporting, firms sell in markets whose business cycles are not perfectly correlated, and so can be expected to have more stable cash flows. If companies are liquidity constrained, this stability of cash flows can provide exporters with certain advantages over firms that operate solely in a domestic market. For instance, under the existence of liquidity constraints, more stable cash flows should foster more stable capital investments. Moreover, the expectation of more stable future cash flows and the information signal from commencing exporting can lessen the severity of liquidity constraints for exporters compared to non-exporters. We test these arguments by examining a stratified representative sample of the Spanish manufacturing sector from 1990 to 1998. Our results suggest that exporters' cash flows and capital investments are more stable than non-exporters'. Moreover, we find that liquidity constraints are less binding for exporters than for non-exporters. The richness of our data allows us to examine alternative explanations for the results we present. We conclude by discussing the strategic implications of our findings for firms.Liquidity constraint; exporter; non-exporter

    1-d gravity in infinite point distributions

    Full text link
    The dynamics of infinite, asymptotically uniform, distributions of self-gravitating particles in one spatial dimension provides a simple toy model for the analogous three dimensional problem. We focus here on a limitation of such models as treated so far in the literature: the force, as it has been specified, is well defined in infinite point distributions only if there is a centre of symmetry (i.e. the definition requires explicitly the breaking of statistical translational invariance). The problem arises because naive background subtraction (due to expansion, or by "Jeans' swindle" for the static case), applied as in three dimensions, leaves an unregulated contribution to the force due to surface mass fluctuations. Following a discussion by Kiessling, we show that the problem may be resolved by defining the force in infinite point distributions as the limit of an exponentially screened pair interaction. We show that this prescription gives a well defined (finite) force acting on particles in a class of perturbed infinite lattices, which are the point processes relevant to cosmological N-body simulations. For identical particles the dynamics of the simplest toy model is equivalent to that of an infinite set of points with inverted harmonic oscillator potentials which bounce elastically when they collide. We discuss previous results in the literature, and present new results for the specific case of this simplest (static) model starting from "shuffled lattice" initial conditions. These show qualitative properties (notably its "self-similarity") of the evolution very similar to those in the analogous simulations in three dimensions, which in turn resemble those in the expanding universe.Comment: 20 pages, 8 figures, small changes (section II shortened, added discussion in section IV), matches final version to appear in PR

    Relaxation to thermal equilibrium in the self-gravitating sheet model

    Full text link
    We revisit the issue of relaxation to thermal equilibrium in the so-called "sheet model", i.e., particles in one dimension interacting by attractive forces independent of their separation. We show that this relaxation may be very clearly detected and characterized by following the evolution of order parameters defined by appropriately normalized moments of the phase space distribution which probe its entanglement in space and velocity coordinates. For a class of quasi-stationary states which result from the violent relaxation of rectangular waterbag initial conditions, characterized by their virial ratio R_0, we show that relaxation occurs on a time scale which (i) scales approximately linearly in the particle number N, and (ii) shows also a strong dependence on R_0, with quasi-stationary states from colder initial conditions relaxing much more rapidly. The temporal evolution of the order parameter may be well described by a stretched exponential function. We study finally the correlation of the relaxation times with the amplitude of fluctuations in the relaxing quasi-stationary states, as well as the relation between temporal and ensemble averages.Comment: 37 pages, 24 figures; some additional discussion of previous literature and other minor modifications, final published versio

    On the effectiveness of mixing in violent relaxation

    Full text link
    Relaxation processes in collisionless dynamics lead to peculiar behavior in systems with long-range interactions such as self-gravitating systems, non-neutral plasmas and wave-particle systems. These systems, adequately described by the Vlasov equation, present quasi-stationary states (QSS), i.e. long lasting intermediate stages of the dynamics that occur after a short significant evolution called "violent relaxation". The nature of the relaxation, in the absence of collisions, is not yet fully understood. We demonstrate in this article the occurrence of stretching and folding behavior in numerical simulations of the Vlasov equation, providing a plausible relaxation mechanism that brings the system from its initial condition into the QSS regime. Area-preserving discrete-time maps with a mean-field coupling term are found to display a similar behaviour in phase space as the Vlasov system.Comment: 10 pages, 11 figure

    Linear theory and violent relaxation in long-range systems: a test case

    Full text link
    In this article, several aspects of the dynamics of a toy model for longrange Hamiltonian systems are tackled focusing on linearly unstable unmagnetized (i.e. force-free) cold equilibria states of the Hamiltonian Mean Field (HMF). For special cases, exact finite-N linear growth rates have been exhibited, including, in some spatially inhomogeneous case, finite-N corrections. A random matrix approach is then proposed to estimate the finite-N growth rate for some random initial states. Within the continuous, N→∞N \rightarrow \infty, approach, the growth rates are finally derived without restricting to spatially homogeneous cases. All the numerical simulations show a very good agreement with the different theoretical predictions. Then, these linear results are used to discuss the large-time nonlinear evolution. A simple criterion is proposed to measure the ability of the system to undergo a violent relaxation that transports it in the vicinity of the equilibrium state within some linear e-folding times

    The Transcriptome of Streptococcus pneumoniae Induced by Local and Global Changes in Supercoiling

    Get PDF
    The bacterial chromosome is compacted in a manner optimal for DNA transactions to occur. The degree of compaction results from the level of DNA-supercoiling and the presence of nucleoid-binding proteins. DNA-supercoiling is homeostatically maintained by the opposing activities of relaxing DNA topoisomerases and negative supercoil-inducing DNA gyrase. DNA-supercoiling acts as a general cis regulator of transcription, which can be superimposed upon other types of more specific trans regulatory mechanism. Transcriptomic studies on the human pathogen Streptococcus pneumoniae, which has a relatively small genome (∌2 Mb) and few nucleoid-binding proteins, have been performed under conditions of local and global changes in supercoiling. The response to local changes induced by fluoroquinolone antibiotics, which target DNA gyrase subunit A and/or topoisomerase IV, involves an increase in oxygen radicals which reduces cell viability, while the induction of global supercoiling changes by novobiocin (a DNA gyrase subunit B inhibitor), or by seconeolitsine (a topoisomerase I inhibitor), has revealed the existence of topological domains that specifically respond to such changes. The control of DNA-supercoiling in S. pneumoniae occurs mainly via the regulation of topoisomerase gene transcription: relaxation triggers the up-regulation of gyrase and the down-regulation of topoisomerases I and IV, while hypernegative supercoiling down-regulates the expression of topoisomerase I. Relaxation affects 13% of the genome, with the majority of the genes affected located in 15 domains. Hypernegative supercoiling affects 10% of the genome, with one quarter of the genes affected located in 12 domains. However, all the above domains overlap, suggesting that the chromosome is organized into topological domains with fixed locations. Based on its response to relaxation, the pneumococcal chromosome can be said to be organized into five types of domain: up-regulated, down-regulated, position-conserved non-regulated, position-variable non-regulated, and AT-rich. The AT content is higher in the up-regulated than in the down-regulated domains. Genes within the different domains share structural and functional characteristics. It would seem that a topology-driven selection pressure has defined the chromosomal location of the metabolism, virulence and competence genes, which suggests the existence of topological rules that aim to improve bacterial fitness
    • 

    corecore