5 research outputs found

    The prevalence of injection-site reactions with disease-modifying therapies and their effect on adherence in patients with multiple sclerosis: an observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interferon beta (IFNβ) and glatiramer acetate (GA) are administered by subcutaneous (SC) or intramuscular (IM) injection. Patients with multiple sclerosis (MS) often report injection-site reactions (ISRs) as a reason for noncompliance or switching therapies. The aim of this study was to compare the proportion of patients on different formulations of IFNβ or GA who experienced ISRs and who switched or discontinued therapy because of ISRs.</p> <p>Methods</p> <p>The Swiss MS Skin Project was an observational multicenter study. Patients with MS or clinically isolated syndrome who were on the same therapy for at least 2 years were enrolled. A skin examination was conducted at the first study visit and 1 year later.</p> <p>Results</p> <p>The 412 patients enrolled were on 1 of 4 disease-modifying therapies for at least 2 years: IM IFNβ-1a (n = 82), SC IFNβ-1b (n = 123), SC IFNβ-1a (n = 184), or SC GA (n = 23). At first evaluation, ISRs were reported by fewer patients on IM IFNβ-1a (13.4%) than on SC IFNβ-1b (57.7%; <it>P </it>< 0.0001), SC IFNβ-1a (67.9%; <it>P </it>< 0.0001), or SC GA (30.4%; <it>P </it>= not significant [NS]). No patient on IM IFNβ-1a missed a dose in the previous 4 weeks because of ISRs, compared with 5.7% of patients on SC IFNβ-1b (<it>P </it>= 0.044), 7.1% of patients on SC IFNβ-1a (<it>P </it>= 0.011), and 4.3% of patients on SC GA (<it>P </it>= NS). Primary reasons for discontinuing or switching therapy were ISRs or lack of efficacy. Similar patterns were observed at 1 year.</p> <p>Conclusions</p> <p>Patients on IM IFNβ-1a had fewer ISRs and were less likely to switch therapies than patients on other therapies. This study may have implications in selecting initial therapy or, for patients considering switching or discontinuing therapy because of ISRs, selecting an alternative option.</p

    Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours

    Get PDF
    BACKGROUND: Hypoxia, which is commonly observed in areas of primary tumours and of metastases, influences response to treatment. However, its characterisation has so far mainly been restricted to the ex vivo analysis of tumour sections using monoclonal antibodies specific to carbonic anhydrase IX (CA IX) or by pimonidazole staining, after the intravenous administration of this 2-nitroimidazole compound in experimental animal models.METHODS: In this study, we describe the generation of high-affinity human monoclonal antibodies (A3 and CC7) specific to human CA IX, using phage technology.RESULTS: These antibodies were able to stain CA IX ex vivo and to target the cognate antigen in vivo. In one of the two animal models of colorectal cancer studied (LS174T), CA IX imaging closely matched pimonidazole staining, with a preferential staining of tumour areas characterised by little vascularity and low perfusion. In contrast, in a second animal model (SW1222), distinct staining patterns were observed for pimonidazole and CA IX targeting. We observed a complementary pattern of tumour regions targeted in vivo by the clinical-stage vascular-targeting antibody L19 and the anti-CA IX antibody A3, indicating that a homogenous pattern of in vivo tumour targeting could be achieved by a combination of the two antibodies.CONCLUSION: The new human anti-CA IX antibodies are expected to be non-immunogenic in patients with cancer and may serve as broadly applicable reagents for the non-invasive imaging of hypoxia and for pharmacodelivery applications. British Journal of Cancer (2009) 101, 645-657. doi: 10.1038/sj.bjc.6605200 www.bjcancer.com Published online 21 July 2009 (C) 2009 Cancer Research U
    corecore