831 research outputs found

    Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

    Full text link
    We describe the first method to automatically estimate the 3D pose of the human body as well as its 3D shape from a single unconstrained image. We estimate a full 3D mesh and show that 2D joints alone carry a surprising amount of information about body shape. The problem is challenging because of the complexity of the human body, articulation, occlusion, clothing, lighting, and the inherent ambiguity in inferring 3D from 2D. To solve this, we first use a recently published CNN-based method, DeepCut, to predict (bottom-up) the 2D body joint locations. We then fit (top-down) a recently published statistical body shape model, called SMPL, to the 2D joints. We do so by minimizing an objective function that penalizes the error between the projected 3D model joints and detected 2D joints. Because SMPL captures correlations in human shape across the population, we are able to robustly fit it to very little data. We further leverage the 3D model to prevent solutions that cause interpenetration. We evaluate our method, SMPLify, on the Leeds Sports, HumanEva, and Human3.6M datasets, showing superior pose accuracy with respect to the state of the art.Comment: To appear in ECCV 201

    Integral closure of rings of integer-valued polynomials on algebras

    Full text link
    Let DD be an integrally closed domain with quotient field KK. Let AA be a torsion-free DD-algebra that is finitely generated as a DD-module. For every aa in AA we consider its minimal polynomial μa(X)∈D[X]\mu_a(X)\in D[X], i.e. the monic polynomial of least degree such that μa(a)=0\mu_a(a)=0. The ring IntK(A){\rm Int}_K(A) consists of polynomials in K[X]K[X] that send elements of AA back to AA under evaluation. If DD has finite residue rings, we show that the integral closure of IntK(A){\rm Int}_K(A) is the ring of polynomials in K[X]K[X] which map the roots in an algebraic closure of KK of all the μa(X)\mu_a(X), a∈Aa\in A, into elements that are integral over DD. The result is obtained by identifying AA with a DD-subalgebra of the matrix algebra Mn(K)M_n(K) for some nn and then considering polynomials which map a matrix to a matrix integral over DD. We also obtain information about polynomially dense subsets of these rings of polynomials.Comment: Keywords: Integer-valued polynomial, matrix, triangular matrix, integral closure, pullback, polynomially dense set. accepted for publication in the volume "Commutative rings, integer-valued polynomials and polynomial functions", M. Fontana, S. Frisch and S. Glaz (editors), Springer 201

    Detection of Reconnection Signatures in Solar Flares

    Get PDF
    Solar flare forecasting is limited by the current understanding of mechanisms that govern magnetic reconnection, the main physical phenomenon associated with these events. As a result, forecasting relies mainly on climatological correlations to historical events rather than the underlying physics principles. Solar physics models place the neutral point of the reconnection event in the solar corona. Correspondingly, studies of photospheric magnetic fields indicate changes during solar flares—particularly in relation to the field helicity—on the solar surface as a result of the associated magnetic reconnection. This study utilizes data from the Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager (HMI) and SpaceWeather HMI Active Region Patches (SHARPs) to analyze full vector-field component data of the photospheric magnetic field during solar flares within a large HMI dataset (May 2010 through September 2019). This analysis is then used to identify and compare trends in the different categories of flare strengths and determine indications of the physical phenomena taking place

    Inner Space Preserving Generative Pose Machine

    Full text link
    Image-based generative methods, such as generative adversarial networks (GANs) have already been able to generate realistic images with much context control, specially when they are conditioned. However, most successful frameworks share a common procedure which performs an image-to-image translation with pose of figures in the image untouched. When the objective is reposing a figure in an image while preserving the rest of the image, the state-of-the-art mainly assumes a single rigid body with simple background and limited pose shift, which can hardly be extended to the images under normal settings. In this paper, we introduce an image "inner space" preserving model that assigns an interpretable low-dimensional pose descriptor (LDPD) to an articulated figure in the image. Figure reposing is then generated by passing the LDPD and the original image through multi-stage augmented hourglass networks in a conditional GAN structure, called inner space preserving generative pose machine (ISP-GPM). We evaluated ISP-GPM on reposing human figures, which are highly articulated with versatile variations. Test of a state-of-the-art pose estimator on our reposed dataset gave an accuracy over 80% on PCK0.5 metric. The results also elucidated that our ISP-GPM is able to preserve the background with high accuracy while reasonably recovering the area blocked by the figure to be reposed.Comment: http://www.northeastern.edu/ostadabbas/2018/07/23/inner-space-preserving-generative-pose-machine

    Variations of Heavy Ion Abundances Relative to Proton Abundances in Large Solar Energetic (E \u3e 10 MeV) Particle Events

    Get PDF
    The elemental composition of heavy ions (with atomic number Z \u3e 2) (hi-Z) in large gradual E \u3e 10 MeV nuc-1 SEP events has been extensively studied in the 2-15 MeV nuc-1 range to determine the acceleration processes and transport properties of SEPs. These studies invariably are based on abundances relative to those of a single element such as C or O and often neglect H and He, the elements of primary interest for space weather. The total radiation of an SEP event is determined not only by the H and He properties but also by those of hi-Z ions whose abundances and variations relative to H from one event to another are unknown. We report a study to determine those variations in a group of 15 large SEP events over the period 2000 to 2015. Five hi-Z ions (He, C, O, Mg, & Fe) were selected to determine variations of their fluences relative to those of H in the 13.5-50.7 MeV nuc-1 energy range for each SEP event. Our average hi-Z abundance ratios slightly exceed those reported by [1] at lower energies, with the Fe event abundances showing the largest standard deviation of an order of magnitude. The event abundances were weakly correlated with H fluences and strongly correlated with speeds Vcme of associated coronal mass ejections (CMEs). These correlations may be evidence of streaming limits in the shock regions of H in the largest events

    Evolution of Coronal Magnetic Field Parameters during X5.4 Solar Flare

    Get PDF
    The coronal magnetic field over NOAA Active Region 11,429 during a X5.4 solar flare on 7 March 2012 is modeled using optimization based Non-Linear Force-Free Field extrapolation. Specifically, 3D magnetic fields were modeled for 11 timesteps using the 12-min cadence Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager photospheric vector magnetic field data, spanning a time period of 1 hour before through 1 hour after the start of the flare. Using the modeled coronal magnetic field data, seven different magnetic field parameters were calculated for 3 separate regions: areas with surface |Bz|≥ 300 G, areas of flare brightening seen in SDO Atmospheric Imaging Assembly imagery, and areas with surface |B| ≥ 1000 G and high twist. Time series of the magnetic field parameters were analyzed to investigate the evolution of the coronal field during the solar flare event and discern pre-eruptive signatures. The data shows that areas with |B| ≥ 1000 G and |Tw|≥ 1.5 align well with areas of initial flare brightening during the pre-flare phase and at the beginning of the eruptive phase of the flare, suggesting that measurements of the photospheric magnetic field strength and twist can be used to predict the flare location within an active region if triggered. Additionally, the evolution of seven investigated magnetic field parameters indicated a destabilizing magnetic field structure that could likely erupt
    • …
    corecore