146 research outputs found
Static and Dynamic Chain Structures in the Mean-Field Theory
We give a brief overview of recent work examining the presence of
-clusters in light nuclei within the Skyrme-force Hartree-Fock model.
Of special significance are investigations into -chain structures in
carbon isotopes and O. Their stability and possible role in fusion
reactions are examined in static and time-dependent Hartree-Fock calculations.
We find a new type of shape transition in collisions and a centrifugal
stabilization of the chain state in a limited range of angular
momenta. No stabilization is found for the chain.Comment: Fusionn 11 Conference, St. Malo, France, 201
Single-particle dissipation in TDHF studied from a phase-space perspective
We study dissipation and relaxation processes within the time-dependent
Hartree-Fock approach using the Wigner distribution function. On the technical
side we present a geometrically unrestricted framework which allows us to
calculate the full six-dimensional Wigner distribution function. With the
removal of geometrical constraints, we are now able to extend our previous
phase-space analysis of heavy-ion collisions in the reaction plane to
unrestricted mean-field simulations of nuclear matter on a three-dimensional
Cartesian lattice. From the physical point of view we provide a quantitative
analysis on the stopping power in TDHF. This is linked to the effect of
transparency. For the medium-heavy Ca+Ca system we examine the
impact of different parametrizations of the Skyrme force, energy-dependence,
and the significance of extra time-odd terms in the Skyrme functional.Comment: 7 pages, 4 figures, 2 videos. arXiv admin note: substantial text
overlap with arXiv:1201.526
Equilibration in the time-dependent Hartree-Fock approach probed with the Wigner distribution function
Calculating the Wigner distribution function in the reaction plane, we are
able to probe the phase-space behavior in time-dependent Hartree-Fock during a
heavy-ion collision. We compare the Wigner distribution function with the
smoothed Husimi distribution function. Observables are defined to give a
quantitative measure for local and global equilibration. We present different
reaction scenarios by analyzing central and non-central and
collisions. It is shown that the initial phase-space
volumes of the fragments barely merge. The mean values of the observables are
conserved in fusion reactions and indicate a "memory effect" in time-dependent
Hartree-Fock. We observe strong dissipation but no evidence for complete
equilibration.Comment: 12 pages, 10 figure
Anomalous Dynamics of Forced Translocation
We consider the passage of long polymers of length N through a hole in a
membrane. If the process is slow, it is in principle possible to focus on the
dynamics of the number of monomers s on one side of the membrane, assuming that
the two segments are in equilibrium. The dynamics of s(t) in such a limit would
be diffusive, with a mean translocation time scaling as N^2 in the absence of a
force, and proportional to N when a force is applied. We demonstrate that the
assumption of equilibrium must break down for sufficiently long polymers (more
easily when forced), and provide lower bounds for the translocation time by
comparison to unimpeded motion of the polymer. These lower bounds exceed the
time scales calculated on the basis of equilibrium, and point to anomalous
(sub-diffusive) character of translocation dynamics. This is explicitly
verified by numerical simulations of the unforced translocation of a
self-avoiding polymer. Forced translocation times are shown to strongly depend
on the method by which the force is applied. In particular, pulling the polymer
by the end leads to much longer times than when a chemical potential difference
is applied across the membrane. The bounds in these cases grow as N^2 and
N^{1+\nu}, respectively, where \nu is the exponent that relates the scaling of
the radius of gyration to N. Our simulations demonstrate that the actual
translocation times scale in the same manner as the bounds, although influenced
by strong finite size effects which persist even for the longest polymers that
we considered (N=512).Comment: 13 pages, RevTeX4, 16 eps figure
Optically driving the radiative Auger transition
In a radiative Auger process, optical decay is accompanied by simultaneous
excitation of other carriers. The radiative Auger process gives rise to weak
red-shifted satellite peaks in the optical emission spectrum. These satellite
peaks have been observed over a large spectral range: in the X-ray emission of
atoms; close to visible frequencies on donors in semiconductors and quantum
emitters; and at infrared frequencies as shake-up lines in two-dimensional
systems. So far, all the work on the radiative Auger process has focussed on
detecting the spontaneous emission. However, the fact that the radiative Auger
process leads to photon emission suggests that the transition can also be
optically excited. In such an inverted radiative Auger process, excitation
would correspond to simultaneous photon absorption and electronic
de-excitation. Here, we demonstrate optical driving of the radiative Auger
transition on a trion in a semiconductor quantum dot. The radiative Auger and
the fundamental transition together form a -system. On driving both
transitions of this -system simultaneously, we observe a reduction of
the fluorescence signal by up to . Our results demonstrate a type of
optically addressable transition connecting few-body Coulomb interactions to
quantum optics. The results open up the possibility of carrying out THz
spectroscopy on single quantum emitters with all the benefits of optics:
coherent laser sources, efficient and fast single-photon detectors. In analogy
to optical control of an electron spin, the -system between the
radiative Auger and the fundamental transitions allows optical control of the
emitters' orbital degree of freedom.Comment: 8 pages, 6 figure
Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode
We demonstrate full charge control, narrow optical linewidths, and optical spin pumping on single self-assembled InGaAs quantum dots embedded in a 162.5−nm-thin diode structure. The quantum dots are just 88nm from the top GaAs surface. We design and realize a p−i−n−i−n diode that allows single-electron charging of the quantum dots at close-to-zero applied bias. In operation, the current flow through the device is extremely small resulting in low noise. In resonance fluorescence, we measure optical linewidths below 2μeV, just a factor of 2 above the transform limit. Clear optical spin pumping is observed in a magnetic field of 0.5T in the Faraday geometry. We present this design as ideal for securing the advantages of self-assembled quantum dots—highly coherent single-photon generation, ultrafast optical spin manipulation—in the thin diodes required in quantum nanophotonics and nanophononics applications
The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields
We consider an "elastic" version of the statistical mechanical monomer-dimer
problem on the n-dimensional integer lattice. Our setting includes the
classical "rigid" formulation as a special case and extends it by allowing each
dimer to consist of particles at arbitrarily distant sites of the lattice, with
the energy of interaction between the particles in a dimer depending on their
relative position. We reduce the free energy of the elastic dimer-monomer (EDM)
system per lattice site in the thermodynamic limit to the moment Lyapunov
exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value
and covariance function are the Boltzmann factors associated with the monomer
energy and dimer potential. In particular, the classical monomer-dimer problem
becomes related to the MLE of a moving average GRF. We outline an approach to
recursive computation of the partition function for "Manhattan" EDM systems
where the dimer potential is a weighted l1-distance and the auxiliary GRF is a
Markov random field of Pickard type which behaves in space like autoregressive
processes do in time. For one-dimensional Manhattan EDM systems, we compute the
MLE of the resulting Gaussian Markov chain as the largest eigenvalue of a
compact transfer operator on a Hilbert space which is related to the
annihilation and creation operators of the quantum harmonic oscillator and also
recast it as the eigenvalue problem for a pantograph functional-differential
equation.Comment: 24 pages, 4 figures, submitted on 14 October 2011 to a special issue
of DCDS-
Wafer-scale epitaxial modulation of quantum dot density
Precise control of the properties of semiconductor quantum dots (QDs) is vital for creating novel devices for quantum photonics and advanced opto-electronics. Suitable low QD-densities for single QD devices and experiments are challenging to control during epitaxy and are typically found only in limited regions of the wafer. Here, we demonstrate how conventional molecular beam epitaxy (MBE) can be used to modulate the density of optically active QDs in one- and two- dimensional patterns, while still retaining excellent quality. We find that material thickness gradients during layer-by-layer growth result in surface roughness modulations across the whole wafer. Growth on such templates strongly influences the QD nucleation probability. We obtain density modulations between 1 and 10 QDs/µm2 and periods ranging from several millimeters down to at least a few hundred microns. This method is universal and expected to be applicable to a wide variety of different semiconductor material systems. We apply the method to enable growth of ultra-low noise QDs across an entire 3-inch semiconductor wafer
Reproducibility of Standing Posture for X-Ray Radiography: A Feasibility Study of the BalancAid with Healthy Young Subjects
Unreliable spinal X-ray radiography measurement due to standing postural variability can be minimized by using positional supports. In this study, we introduce a balancing device, named BalancAid, to position the patients in a reproducible position during spinal X-ray radiography. This study aimed to investigate the performance of healthy young subjects’ standing posture on the BalancAid compared to standing on the ground mimicking the standard X-rays posture in producing a reproducible posture for the spinal X-ray radiography. A study on the posture reproducibility measurement was performed by taking photographs of 20 healthy young subjects with good balance control standing on the BalancAid and the ground repeatedly within two consecutive days. We analyzed nine posterior–anterior (PA) and three lateral (LA) angles between lines through body marks placed in the positions of T3, T7, T12, L4 of the spine to confirm any translocations and movements between the first and second day measurements. No body marks repositioning was performed to avoid any error. Lin’s CCC test on all angles comparing both standing postures demonstrated that seven out of nine angles in PA view, and two out of three angles in LA view gave better reproducibility for standing on the BalancAid compared to standing on the ground. The PA angles concordance is on average better than that of the LA angles
- …