2,757 research outputs found

    Identifying reliable traits across laboratory mouse exploration arenas: A meta-analysis

    Get PDF
    This study is a meta-analysis of 367 mice from a collection of behaviour neuroscience and behaviour genetic studies run in the same lab in Zurich, Switzerland. We employed correlation-based statistics to confirm and quantify consistencies in behaviour across the testing environments. All 367 mice ran exactly the same behavioural arenas: the light/dark box, the null maze, the open field arena, an emergence task and finally an object exploration task. We analysed consistency of three movement types across those arenas (resting, scanning, progressing), and their relative preference for three zones of the arenas (home, transition, exploration). Results were that 5/6 measures showed strong individual-differences consistency across the tests. Mean inter-arena correlations for these five measures ranged from +.12 to +.53. Unrotated principal component factor analysis (UPCFA) and Cronbach’s alpha measures showed these traits to be reliable and substantial (32-63% of variance across the five arenas). UPCFA loadings then indicate which tasks give the best information about these cross-task traits. One measure (that of time spent in “intermediate” zones) was not reliable across arenas. Conclusions centre on the use of individual differences research and behavioural batteries to revise understandings of what measures in one task predict for behaviour in others. Developing better behaviour measures also makes sound scientific and ethical sense

    Local and global spontaneous calcium events regulate neurite outgrowth and onset of GABAergic phenotype during neural precursor differentiation

    Get PDF
    Neural stem cells can generate in vitro progenitors of the three main cell lineages found in the CNS. The signaling pathways underlying the acquisition of differentiated phenotypes in these cells are poorly understood. Here we tested the hypothesis that Ca2+ signaling controls differentiation of neural precursors. We found low-frequency global and local Ca2+ transients occurring predominantly during early stages of differentiation. Spontaneous Ca2+ signals in individual precursors were not synchronized with Ca2+ transients in surrounding cells. Experimentally induced changes in the frequency of local Ca2+signals and global Ca2+ rises correlated positively with neurite outgrowth and the onset of GABAergic neurotransmitter phenotype, respectively. NMDA receptor activity was critical for alterations in neuronal morphology but not for the timing of the acquisition of the neurotransmitter phenotype. Thus, spontaneous Ca2+ signals are an intrinsic property of differentiating neurosphere-derived precursors. Their frequency may specify neuronal morphology and acquisition of neurotransmitter phenotype

    TrustShadow: Secure Execution of Unmodified Applications with ARM TrustZone

    Full text link
    The rapid evolution of Internet-of-Things (IoT) technologies has led to an emerging need to make it smarter. A variety of applications now run simultaneously on an ARM-based processor. For example, devices on the edge of the Internet are provided with higher horsepower to be entrusted with storing, processing and analyzing data collected from IoT devices. This significantly improves efficiency and reduces the amount of data that needs to be transported to the cloud for data processing, analysis and storage. However, commodity OSes are prone to compromise. Once they are exploited, attackers can access the data on these devices. Since the data stored and processed on the devices can be sensitive, left untackled, this is particularly disconcerting. In this paper, we propose a new system, TrustShadow that shields legacy applications from untrusted OSes. TrustShadow takes advantage of ARM TrustZone technology and partitions resources into the secure and normal worlds. In the secure world, TrustShadow constructs a trusted execution environment for security-critical applications. This trusted environment is maintained by a lightweight runtime system that coordinates the communication between applications and the ordinary OS running in the normal world. The runtime system does not provide system services itself. Rather, it forwards requests for system services to the ordinary OS, and verifies the correctness of the responses. To demonstrate the efficiency of this design, we prototyped TrustShadow on a real chip board with ARM TrustZone support, and evaluated its performance using both microbenchmarks and real-world applications. We showed TrustShadow introduces only negligible overhead to real-world applications.Comment: MobiSys 201

    Structure factors of harmonic and anharmonic Fibonacci chains by molecular dynamics simulations

    Full text link
    The dynamics of quasicrystals is characterized by the existence of phason excitations in addition to the usual phonon modes. In order to investigate their interplay on an elementary level we resort to various one-dimensional model systems. The main observables are the static, the incoherent, and the coherent structure factor, which are extracted from molecular dynamics simulations. For the validation of the algorithms, results for the harmonic periodic chain are presented. We then study the Fibonacci chain with harmonic and anharmonic interaction potentials. In the dynamic Fibonacci chain neighboring atoms interact by double-well potentials allowing for phason flips. The difference between the structure factors of the dynamic and the harmonic Fibonacci chain lies in the temperature dependence of the phonon line width. If a bias is introduced in the well depth, dispersionless optic phonon bands split off.Comment: 12 pages, 15 figure

    Parallel suppression of superconductivity and Fe moment in the collapsed tetragonal phase of Ca0.67Sr0.33Fe2As2 under pressure

    Get PDF
    Using non-resonant Fe K-beta x-ray emission spectroscopy, we reveal that Sr-doping of CaFe2As2 decouples the Fe moment from the volume collapse transition, yielding a collapsed-tetragonal, paramagnetic normal state out of which superconductivity develops. X-ray diffraction measurements implicate the c-axis lattice parameter as the controlling criterion for the Fe moment, promoting a generic description for the appearance of pressure-induced superconductivity in the alkaline-earth-based 122 ferropnictides (AFe2As2). The evolution of the superconducting critical temperature with pressure lends support to theories for superconductivity involving unconventional pairing mediated by magnetic fluctuations

    Role of Boron p-Electrons and Holes in Superconducting MgB2, and other Diborides: A Fully-Relaxed, Full-Potential Electronic Structure Study

    Full text link
    We present the results of fully-relaxed, full-potential electronic structure calculations for the new superconductor MgB2, and BeB2, NaB2, and AlB2, using density-functional-based methods. Our results described in terms of (i) density of states (DOS), (ii) band-structure, and (iii) the DOS and the charge density around the Fermi energy EF, clearly show the importance of B p-band for superconductivity. In particular, we show that around EF, the charge density in MgB2, BeB2 and NaB2 is planar and is associated with the B plane. For BeB2 and NaB2, our results indicate qualitative similarities but significant quantitative differences in their electronic structure due to different lattice constants a and c.Comment: 4 pages, 4 figures, Submitted to Phys Rev. Lett. on March 6, 2001; resubmission on April 2
    corecore