73 research outputs found

    Current rectification by asymmetric molecules: An ab initio study

    Full text link
    We study current rectification effect in an asymmetric molecule HOOC-C6_6H4_4-(CH2_2)n_n sandwiched between two Aluminum electrodes using an {\sl ab initio} nonequilibrium Green function method. The conductance of the system decreases exponentially with the increasing number nn of CH2_2. The phenomenon of current rectification is observed such that a very small current appears at negative bias and a sharp negative differential resistance at a critical positive bias when n2n\ge 2. The rectification effect arises from the asymmetric structure of the molecule and the molecule-electrode couplings. A significant rectification ratio of \sim38 can be achieved when n=5n=5.Comment: to appear in J. Chem. Phy

    Absorption-emission symmetry breaking and the different origins of vibrational structures of the 1Qy and 1Qx electronic transitions of pheophytin a

    Full text link
    © 2019 Author(s). The vibrational structure of the optical absorption and fluorescence spectra of the two lowest-energy singlet electronic states (Qy and Qx) of pheophytin a were carefully studied by combining low-resolution and high-resolution spectroscopy with quantum chemical analysis and spectral modeling. Large asymmetry was revealed between the vibrational structures of the Qy absorption and fluorescence spectra, integrally characterized by the total Huang-Rhys factor and reorganization energy in absorption of SvibA = 0.43 ± 0.06, λA = 395 cm-1 and in emission of SvibE = 0.35 ± 0.06, λE = 317 cm-1. Time-dependent density-functional theory using the CAM-B3LYP, ωB97XD, and MN15 functionals could predict and interpret this asymmetry, with the exception of one vibrational mode per model, which was badly misrepresented in predicted absorption spectra; for CAM-B3LYP and ωB97XD, this mode was a Kekulé-type mode depicting aromaticity. Other computational methods were also considered but performed very poorly. The Qx absorption spectrum is broad and could not be interpreted in terms of a single set of Huang-Rhys factors depicting Franck-Condon allowed absorption, with Herzberg-Teller contributions to the intensity being critical. For it, CAM-B3LYP calculations predict that SvibA (for modes >100 cm-1) = 0.87 and λA = 780 cm-1, with effective x and y polarized Herzberg-Teller reorganization energies of 460 cm-1 and 210 cm-1, respectively, delivering 15% y-polarized intensity. However, no method was found to quantitatively determine the observed y-polarized contribution, with contributions of up to 50% being feasible

    Excitons in a Photosynthetic Light-Harvesting System: A Combined Molecular Dynamics/Quantum Chemistry and Polaron Model Study

    Get PDF
    The dynamics of pigment-pigment and pigment-protein interactions in light-harvesting complexes is studied with a novel approach which combines molecular dynamics (MD) simulations with quantum chemistry (QC) calculations. The MD simulations of an LH-II complex, solvated and embedded in a lipid bilayer at physiological conditions (with total system size of 87,055 atoms) revealed a pathway of a water molecule into the B800 binding site, as well as increased dimerization within the B850 BChl ring, as compared to the dimerization found for the crystal structure. The fluctuations of pigment (B850 BChl) excitation energies, as a function of time, were determined via ab initio QC calculations based on the geometries that emerged from the MD simulations. From the results of these calculations we constructed a time-dependent Hamiltonian of the B850 exciton system from which we determined the linear absorption spectrum. Finally, a polaron model is introduced to describe quantum mechanically both the excitonic and vibrational (phonon) degrees of freedom. The exciton-phonon coupling that enters into the polaron model, and the corresponding phonon spectral function are derived from the MD/QC simulations. It is demonstrated that, in the framework of the polaron model, the absorption spectrum of the B850 excitons can be calculated from the autocorrelation function of the excitation energies of individual BChls, which is readily available from the combined MD/QC simulations. The obtained result is in good agreement with the experimentally measured absorption spectrum.Comment: REVTeX3.1, 23 pages, 13 (EPS) figures included. A high quality PDF file of the paper is available at http://www.ks.uiuc.edu/Publications/Papers/PDF/DAMJ2001/DAMJ2001.pd

    Challenges facing an understanding of the nature of low-energy excited states in photosynthesis

    Full text link
    © 2016 Elsevier B.V. While the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented. A concerted experimental and theoretical research strategy is suggested and outlined, this being aimed at providing a fully comprehensive understanding

    The chlorosome: a prototype for efficient light harvesting in photosynthesis

    Get PDF
    Three phyla of bacteria include phototrophs that contain unique antenna systems, chlorosomes, as the principal light-harvesting apparatus. Chlorosomes are the largest known supramolecular antenna systems and contain hundreds of thousands of BChl c/d/e molecules enclosed by a single membrane leaflet and a baseplate. The BChl pigments are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Their excitation energy flows via a small protein, CsmA embedded in the baseplate to the photosynthetic reaction centres. Chlorosomes allow for photosynthesis at very low light intensities by ultra-rapid transfer of excitations to reaction centres and enable organisms with chlorosomes to live at extraordinarily low light intensities under which no other phototrophic organisms can grow. This article reviews several aspects of chlorosomes: the supramolecular and molecular organizations and the light-harvesting and spectroscopic properties. In addition, it provides some novel information about the organization of the baseplate

    Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts

    Get PDF
    Chlorophyll (Chl) b serves an essential function in accumulation of light-harvesting complexes (LHCs) in plants. In this article, this role of Chl b is explored by considering the properties of Chls and the ligands with which they interact in the complexes. The overall properties of the Chls, not only their spectral features, are altered as consequences of chemical modifications on the periphery of the molecules. Important modifications are introduction of oxygen atoms at specific locations and reduction or desaturation of sidechains. These modifications influence formation of coordination bonds by which the central Mg atom, the Lewis acid, of Chl molecules interacts with amino acid sidechains, as the Lewis base, in proteins. Chl a is a versatile Lewis acid and interacts principally with imidazole groups but also with sidechain amides and water. The 7-formyl group on Chl b withdraws electron density toward the periphery of the molecule and consequently the positive Mg is less shielded by the molecular electron cloud than in Chl a. Chl b thus tends to form electrostatic bonds with Lewis bases with a fixed dipole, such as water and, in particular, peptide backbone carbonyl groups. The coordination bonds are enhanced by H-bonds between the protein and the 7-formyl group. These additional strong interactions with Chl b are necessary to achieve assembly of stable LHCs

    Spectral hole burning: examples from photosynthesis

    Get PDF
    The optical spectra of photosynthetic pigment–protein complexes usually show broad absorption bands, often consisting of a number of overlapping, ‘hidden’ bands belonging to different species. Spectral hole burning is an ideal technique to unravel the optical and dynamic properties of such hidden species. Here, the principles of spectral hole burning (HB) and the experimental set-up used in its continuous wave (CW) and time-resolved versions are described. Examples from photosynthesis studied with hole burning, obtained in our laboratory, are then presented. These examples have been classified into three groups according to the parameters that were measured: (1) hole widths as a function of temperature, (2) hole widths as a function of delay time and (3) hole depths as a function of wavelength. Two examples from light-harvesting (LH) 2 complexes of purple bacteria are given within the first group: (a) the determination of energy-transfer times from the chromophores in the B800 ring to the B850 ring, and (b) optical dephasing in the B850 absorption band. One example from photosystem II (PSII) sub-core complexes of higher plants is given within the second group: it shows that the size of the complex determines the amount of spectral diffusion measured. Within the third group, two examples from (green) plants and purple bacteria have been chosen for: (a) the identification of ‘traps’ for energy transfer in PSII sub-core complexes of green plants, and (b) the uncovering of the lowest k = 0 exciton-state distribution within the B850 band of LH2 complexes of purple bacteria. The results prove the potential of spectral hole burning measurements for getting quantitative insight into dynamic processes in photosynthetic systems at low temperature, in particular, when individual bands are hidden within broad absorption bands. Because of its high-resolution wavelength selectivity, HB is a technique that is complementary to ultrafast pump–probe methods. In this review, we have provided an extensive bibliography for the benefit of scientists who plan to make use of this valuable technique in their future research
    corecore