310 research outputs found
V-shaped inversion domains in InN grown on c-plane sapphire
Inversion domains with a V-shape were found to nucleate inside a Mg-doped InN heteroepitaxial layer. They resemble Al-polarity domains, observed recently, in N-polarity AlN films. However, the angle between the side-walls of the V-shaped domain and the c-axis differs in these two cases. In InN, this angle is almost two times bigger than that reported for AlN. The origin of V-shaped inversion domains in InN film is not yet clear
Inversion domains in AlN grown on (0001) sapphire
Al-polarity inversion domains formed during AlN layer growth on (0001) sapphire were identified using transmission electron microscopy (TEM). They resemble columnar inversion domains reported for GaN films grown on (0001) sapphire. However, for AlN, these columns have a V-like shape with boundaries that deviate by 2 {+-} 0.5{sup o} from the c-axis. TEM identification of these defects agrees with the post-growth surface morphology as well as with the microstructure revealed by etching in hot aqueous KOH
Correlations between spatially resolved Raman shifts and dislocation density in GaN films
Spatially resolved Raman spectra were measured on thick GaN samples with known dislocation density grown by hydride vapor phase epitaxy. The frequencies of the E-2 (high) and E-1 (transverse optical) phonons shift to lower wave number over a distance of 30 mum from the sapphire substrate/GaN interface. The shifts are linearly correlated with the dislocation density suggesting that the strain due to the lattice mismatch at the interface determines both quantities
Influence of Dopants on Defect Formation in GaN
Influence of p-dopants (Mg and Be) on the structure of GaN has been studied using Transmission Electron Microscopy (TEM). Bulk GaN:Mg and GaN:Be crystals grown by a high pressure and high temperature process and GaN:Mg grown by metal-organic chemical-vapor deposition (MOCVD) have been studied. Structural dependence on growth polarity was observed in the bulk crystals. Spontaneous ordering in bulk GaN:Mg on c-plane (formation of Mg-rich planar defects with characteristics of inversion domains) was observed for growth in the N to Ga polar direction (N polarity). On the opposite site of the crystal (growth in the Ga to N polar direction) Mg-rich pyramidal defects empty inside (pinholes) were observed. Both these defects were also observed in MOCVD grown crystals. Pyramidal defects were also observed in the bulk GaN:Be crystals
High resistivity and ultrafast carrier lifetime in argon implanted GaAs
We have investigated the optoelectronic and structural properties of GaAs that has been implanted with Ar ions and subsequently annealed. The material exhibits all the basic optical and electronic characteristics typically observed in nonstoichiometric, As implanted or low‐temperature‐grown GaAs. Annealing of Ar implanted GaAs at 600 °C produces a highly resistive material with a subpicosecond trapping lifetime for photoexcited carriers. Transmission electron microscopy shows that, instead of As precipitates, characteristic for the nonstoichiometeric GaAs, voids ranging in size from 3 to 5 nm are observed in Ar implanted and annealed GaAs. © 1996 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69637/2/APPLAB-69-17-2569-1.pd
Unusual luminescence lines in GaN
none11A series of sharp intense peaks was observed in the low-temperature photoluminescence spectrum of unintentionally doped GaN in the photon energy range between 3.0 and 3.46 eV. We attributed the majority of these peaks to excitons bound to unidentified structural and surface defects. Most of
the structural- and surface-related peaks ~at 3.21, 3.32, 3.34, 3.35, 3.38, and 3.42 eV! were observed in Ga polar films. In N polar GaN, we often observed the 3.45 eV peak attributed to excitons bound to the inversion domain interfaces.SCOPUS 2-s2.0-0242496327 DOI: 10.1063/1.1609632M.A. RESHCHIKOV; D. HUANG; F. YUN; P. VISCONTI; L. HE; H. MORKOC; J. JASINSKI; Z. LILIENTAL-WEBER; R.J.MOLNAR; S. S. PARK; K.Y.LEEM. A., Reshchikov; D., Huang; F., Yun; Visconti, Paolo; L., He; H., Morkoc; J., Jasinski; Z., LILIENTAL WEBER; R. J., Molnar; S. S., Park; K. Y., Le
Recommended from our members
Defects in p-GaN and their atomic structure
In this paper defects formed in p-doped GaN:Mg grown with Ga polarity will be discussed. The atomic structure of these characteristic defects (Mg-rich hexagonal pyramids and truncated pyramids) in bulk and thin GaN:Mg films grown with Ga polarity was determined at atomic resolution by direct reconstruction of the scattered electron wave in a transmission electron microscope. Small cavities were present inside the defects. The inside walls of the cavities were covered by GaN which grew with reverse polarity compared to the matrix. It was proposed that lateral overgrowth of the cavities restores matrix polarity on the defect base. Exchange of Ga and N sublattices within the defect compared to the matrix lead to a 0.6 {+-} 0.2 {angstrom} displacement between the Ga sublattices of these two areas. A [1{und 1}00]/3 shift with change from AB stacking in the matrix to BC within the entire pyramid is observe
Recommended from our members
Effect of stoichiometry on defect distribution in cubic GaN grown on GaAs by plasma-assisted MBE
High resolution electron microscopy was used to study the structure of {beta}-GaN epilayers grown on (001) GaAs substrates by plasma- assisted molecular-beam-epitaxy. The rf plasma source was used to promote chemically active nitrogen. The layer quality was shown to depend on growth conditions (Ga flux and N{sub 2} flow for fixed rf power). The best quality of GaN layers was achieved by ``stoichiometric`` growth; Ga-rich layers contain a certain amount of the wurtzite phase. GaN layers contain a high density of stacking faults which drastically decreases toward the GaN surface. Stacking faults are anisotropically distributed in the GaN layer; the majority intersect the interface along lines parallel to the ``major flat`` of the GaAs substrate. This correlates well with the observed anisotropy in the intensity distribution of x-ray reflexions. Formation of stacking faults are often associated with atomic steps at the GaN- GaAs interfaces
Recommended from our members
Transmission Electron Microscopy Study of InN Nanorods
InN nanorods were grown on a, c-, and r-plane of sapphire and also on Si (111) and GaN (0001) by non-catalytic, template-free hydride metal-organic vapor phase epitaxy and studied by transmission electron microscopy, electron energy loss (EELS) and photoluminescence (PL) at room temperature. These nanocrystals have different shapes and different faceting depending on the substrate used and their crystallographic orientation. EELS measurements have confirmed the high purity of these crystals. The observed PL peak was in the range of 0.9-0.95 eV. The strongest PL intensity was observed for the nanocrystals with the larger diameters
- …