109 research outputs found

    Simulation of MeV/atom cluster correlations in matter

    Get PDF
    We present an efficient algorithm able to predict the trajectories of individual cluster constituents as they penetrate relatively thick amorphous targets. Our algorithm properly treats both the intracluster Coulomb repulsion and the collisions between cluster constituents and target atoms. We have compared our simulation predictions to experimental measurements of the distribution of lateral exit velocities, and demonstrated that the in-target Coulomb explosion of 2MeV/atom carbon clusters in carbon foils must be shielded with a screening length of less than 2.5 Å. We also present a simple phenomenological model for the suppression of the exit-side charge of ions in clusters which depends on the enhanced ionization potential that an electron near an ion feels due to the ion’s charged comoving neighbors. By using our simulation algorithm we have predicted the exit correlations of the cluster constituents and verified that the charge suppression model fits the observed charge suppression of ions in clusters to within the experimental uncertainties

    Heavy gold cluster beams production and identification

    No full text
    NIM ACCIt is shown that beams of very heavy gold clusters can be produced by a liquid metal ion source (LMIS). An experimental method is described for defining the LMIS source and the Wien filter parameters that must be set to extract and select large Aun clusters. This method is based on the acceleration of the clusters to high energy (MeV) and on the measurement, after their passage through a thin foil, of their number of constituents and velocity. Only an average mass over charge value is obtained for a given set of source and Wien filter parameters. These parameters can then be used to select heavy Aun cluster beams for applications at low energy (keV) in mass spectrometry

    Energy loss and angular distributions of gold cluster constituents

    No full text
    Heavy gold cluster beams are accelerated to high energy (hundreds of keV/atom) and break up when going through a thin foil. The energy and angular distributions of the constituents are then measured and very well reproduced by a SRIM code calculation, which takes into account atomic interactions only. These distributions do not depend on the number of constituents in the cluster and are found to be the same as those of single gold atoms at the same velocity, in the studied energy range

    Genome-Wide Gene Expression Analysis in Cancer Cells Reveals 3D Growth to Affect ECM and Processes Associated with Cell Adhesion but Not DNA Repair

    Get PDF
    Cell morphology determines cell behavior, signal transduction, protein-protein interaction, and responsiveness to external stimuli. In cancer, these functions profoundly contribute to resistance mechanisms to radio- and chemotherapy. With regard to this aspect, this study compared the genome wide gene expression in exponentially growing cell lines from different tumor entities, lung carcinoma and squamous cell carcinoma, under more physiological three-dimensional (3D) versus monolayer cell culture conditions. Whole genome cDNA microarray analysis was accomplished using the Affymetrix HG U133 Plus 2.0 gene chip. Significance analysis of microarray (SAM) and t-test analysis revealed significant changes in gene expression profiles of 3D relative to 2D cell culture conditions. These changes affected the extracellular matrix and were mainly associated with biological processes like tissue development, cell adhesion, immune system and defense response in contrast to terms related to DNA repair, which lacked significant alterations. Selected genes were verified by semi-quantitative RT-PCR and Western blotting. Additionally, we show that 3D growth mediates a significant increase in tumor cell radio- and chemoresistance relative to 2D. Our findings show significant gene expression differences between 3D and 2D cell culture systems and indicate that cellular responsiveness to external stress such as ionizing radiation and chemotherapeutics is essentially influenced by differential expression of genes involved in the regulation of integrin signaling, cell shape and cell-cell contact

    MeV, keV AND PHOTON INDUCED DESORPTION TIME OF FLIGHT MASS SPECTROMETRY

    No full text
    An experimental comparison is presented concerning secondary ion desorption from insulators by keV and MeV heavy ion and by pulsed laser light. Time of flight mass spectra obtained with these desorption probes turned out to show many similarities /1,2,3/ despite of the quite different energizing processes. Some corresponding data have been published already /1,2,3,4/. The aim of the present work is to measure absolute ion yields and to exhibit the virtually existing differences associated with the three desorption probes. This has an practical aspect, since the combination of the methods could inlarge their capabilities for mass spectrometry but it might also lead to a deeper understanding of the desorption mechanisms. The measurements were made with the same targets under the same experimental conditions whatever the desorption probes (keV, MeV, Laser)
    • …
    corecore