18 research outputs found
Impact of noise on a dynamical system: prediction and uncertainties from a swarm-optimized neural network
In this study, an artificial neural network (ANN) based on particle swarm
optimization (PSO) was developed for the time series prediction. The hybrid
ANN+PSO algorithm was applied on Mackey--Glass chaotic time series in the
short-term . The performance prediction was evaluated and compared with
another studies available in the literature. Also, we presented properties of
the dynamical system via the study of chaotic behaviour obtained from the
predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with
a Gaussian stochastic procedure (called {\it stochastic} hybrid ANN+PSO) in
order to obtain a new estimator of the predictions, which also allowed us to
compute uncertainties of predictions for noisy Mackey--Glass chaotic time
series. Thus, we studied the impact of noise for several cases with a white
noise level () from 0.01 to 0.1.Comment: 11 pages, 8 figure
Artificial intelligence for photovoltaic systems
Photovoltaic systems have gained an extraordinary popularity in the energy generation industry. Despite the benefits, photovoltaic systems still suffer from four main drawbacks, which include low conversion efficiency, intermittent power supply, high fabrication costs and the nonlinearity of the PV system output power. To overcome these issues, various optimization and control techniques have been proposed. However, many authors relied on classical techniques, which were based on intuitive, numerical or analytical methods. More efficient optimization strategies would enhance the performance of the PV systems and decrease the cost of the energy generated. In this chapter, we provide an overview of how Artificial Intelligence (AI) techniques can provide value to photovoltaic systems. Particular attention is devoted to three main areas: (1) Forecasting and modelling of meteorological data, (2) Basic modelling of solar cells and (3) Sizing of photovoltaic systems. This chapter will aim to provide a comparison between conventional techniques and the added benefits of using machine learning methods