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Artificial Intelligence for Photovoltaic Systems

Rami Ghannam, Paulo Valente Klaine and Muhammad Imran

Abstract Photovoltaic systems have gained an extraordinary popularity in the en-
ergy generation industry. Despite the benefits, photovoltaic systems still suffer from
four main drawbacks, which include low conversion efficiency, intermittent power
supply, high fabrication costs and the nonlinearity of the PV system output power.
To overcome these issues, various optimization and control techniques have been
proposed. However, many authors relied on classical techniques, which were based
on intuitive, numerical or analytical methods. More efficient optimization strategies
would enhance the performance of the PV systems and decrease the cost of the en-
ergy generated. In this chapter, we provide an overview of how Artificial Intelligence
(AI) techniques can provide value to photovoltaic systems. Particular attention is
devoted to three main areas: (1) Forecasting and modelling of meteorological data,
(2) Basic modeling of solar cells and (3) Sizing of photovoltaic systems. This chapter
will aim to provide a comparison between conventional techniques and the added
benefits of using machine learning methods.

Key words: Photovoltaics, Artificial Intelligence

1 Introduction

According to the late Nobel laureate, Prof. Richard Smalley, energy is the most
important challenge facing humanity today [1]. Not only can solar energy help in
the democratization of energy, but it also has the potential to profoundly improve the
lives of communities worldwide. The Sun provides a tremendous source of energy
and has an important role to play in the energy generation mix of many nations. In
particular, photovoltaic (PV) technology is a mature, proven and reliable method for
converting the Sun’s vast energy into electricity.
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The Sun therefore provides a free source of energy, which can be harnessed and
converted into electricity using photovoltaic (PV) technology. PV technology has
the benefit of being modular and scalable. It can therefore be very quickly installed
in a wide range of locations. These locations can vary from conventional ground
installations to domestic and commercial buildings. However, among the challenges
in achieving widespread use of this technology is the price of solar electricity in
comparison to conventional sources of energy. Innovation into the development of
newmaterials and solar cell architectures is therefore important in order to help drive
the cost of solar electricity down and to develop new solar cells that can generatemore
electricity per unit area. However, thanks to advancements in computation capacity
and speed, artificial intelligence is now emerging as another effective technique to
help achieve these targets. We will focus on how AI can be applied to the field of
PV in three main areas, which are (1) Forecasting and modelling of meteorological
data, (2) Basic modelling of solar cells and (3) Sizing of photovoltaic systems.

Machine learning (ML) is an artificial intelligence technique that involves feeding
data to algorithms, which aim to figure out patterns in the data. Examples of AI
algorithms include Neural Networks (NN), Fuzzy Logic (FL), Simulated Annealing
(SA), Genetic Algorithm (GA), Ant Colony (ACO), Particle Swarm Optimization
(PSO) and Hybrid Techniques (HT). Consequently, the aim of this chapter is to
provide an overview of these AI techniques and to demonstrate how some of them
can be used to improve PV system performance in three areas.

2 Brief Introduction to Artificial Intelligence Techniques

According to Barr and Feigenbaum, AI is a discipline within computer science that is
concerned with designing computational systems that are able to understand reason
and solve problems in a similar way to humans [2]. Nowadays, intelligent computing
technologies are either replacing conventional techniques or are being integrated
into existing systems.

AI is a vast subject containing many topics and subdivisions. One particular
topic that has attracted increased attention is the field of Machine Learning (ML),
whereby algorithms are designed with the ability to learn without being explicitly
programmed to [3]. By using statistical techniques, these algorithms are capable
of analyzing an input dataset in order to make useful predictions about missing or
future data.

Depending on how learning is performed, ML algorithms are classified in dif-
ferent ways. Mainly, ML solutions can be divided into three major branches, which
are supervised learning, unsupervised learning and reinforcement learning. The fol-
lowing sections will provide a brief introduction to each ML branch, as well as an
explanation into how other AI algorithms have been used for various PV applications.



3

2.1 Supervised Learning

With this type of learning, a supervisor or teacher is required to assist the algorithm
in learning its parameters. These algorithms require a dataset that has information
about both the input data as well as the output. During its learning phase, as the
algorithms try to make predictions about the dataset, the teacher corrects and guides
the algorithms in the right direction, making them improve over time.

In addition, supervised learning methods can be divided into twomain categories,
depending on the output variable that they are trying to predict. If the output data is
a discrete variable, such as trying to determine if the next day will be sunny, cloudy
or rainy (Class 1, 2 or 3), then these cases are said to be a classification problem. On
the other hand, if the output required is a continuous or real value, such as trying to
predict the irradiation levels of a city during a specific time, or trying to determine
the best size of a PV panel, then the case becomes a regression problem [4].

Some examples of supervised learning algorithms include linear and logistic re-
gression, k-Nearest Neighbours, Neural Networks, as well as more robust algorithms
such as deep neural networks and their variations. Figure 1 summarises the concept
of an artificial neural network, which is inspired by biological networks in the brain
[5, 6, 7, 8, 9]. An ANN therefore contains three layers (input, hidden and output),
connections, biases, weights, an activation function and a summation node. These
weights and biases are important parameters that influence the output function.

2.2 Unsupervised Learning

Unsupervised learning algorithms, on the other hand, do not re-quire a supervisor in
order to learn or make predictions about the input data. In this case, these types of
algorithms require only a dataset with input data and their goal is to correctly learn
a model that best represents the given data [4]. Consequently, since these algorithms
rely on finding patterns in the input data, unsupervised learning methods mainly
consist of clustering algorithms, such as K-means and self-organizing maps.

2.3 Reinforcement Learning

Lastly, the third major branch ofML is the field of reinforcement learning. In contrast
to the previous two fields, reinforcement learning algorithms rely on a goal seeking
approach, whereby the learner tries different actions in order to discover which ones
are best in achieving a certain goal [10]. Some examples of reinforcement learning
algorithms include Q-Learning and Monte Carlo methods.
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(a) ANN Prediction Method-
ology

(b) Generalised ANN Model

Fig. 1 General ANN Concept

2.4 Other Techniques

Other intelligent ML approaches include Expert Systems (ES), Fuzzy Logic (FL),
Simulated Annealing (SA), Genetic Algorithms (GA), Ant Colony (ACO) and Par-
ticle Swarm Theory (PSO). In contrast to conventional software programs that solve
specific tasks within a range of boundary conditions, Expert Systems (ES) are de-
signed to solve problems using the same approach as humans. An ES therefore
consists of two main parts: an inference engine and a knowledge base. The knowl-
edge base contains facts and rules, whereas the inference engine aims to apply these
rules and facts to infer new facts [11, 12].

Similarly, a number of optimisation techniques have been developed that were
inspired by nature. These include Genetic Algorithms (GA), which were first devel-
oped by Holland in 1975 and are based on the principles of genetics and evolution
[13, 14]. Furthermore, Ant Colony (ACO) is another computational optimisation
problem that was inspired by the behaviour of ants in finding the shortest path from
their nests to their food. It was first formulated by Marco Dorigo in 1992 [15]. Here,
ants move randomly to search for the optimum path to their food. They lay down
pheromones as they move. The stronger the pheromones, the more likely ants will
follow that particular path. This technique is nowadays used to optimise machine
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scheduling and telecommunications networks [16]. Other nature-inspired techniques
include Particle Swarm Optimisation (PSO), which is influenced by the swarm and
flocking of birds [17, 18, 19, 20].

Another optimisation technique that was introduced by Zadeh in 1965 includes
Fuzzy Logic (FL), which is a branch of computer logic that is different from Boolean
or classic logic [21]. In contrast to classic logic, which has binary values of 1 (true)
or 0 (false), Fuzzy Logic permits multiple intermediate possibilities within that set.
Fuzzy Logic is often used in combination with Expert Systems and Artificial Neural
Networks [22]. Moreover, Simulated Annealing (SA) is an effective optimisation
technique that was developed by Kirkpatrick et al. [23, 24]. It was inspired by the
process of heating and slow cooling of solids and can be used for maximizing or
minimizing a function.

3 Artificial Intelligence in PV Systems

In this chapter, we will demonstrate how artificial intelligence has been successfully
applied in three different applications of photovoltaics. With each of these applica-
tions, a comparison between conventional and AI techniques will be presented. The
first step in PV system sizing and modelling is weather forecasting. Consequently,
it is only appropriate that this section starts with the application of AI in weather
forecasting.

3.1 Forecasting of Meteorological Data

Predicting the weather is of critical importance for determining the power output
of a PV system. Meteorological data such as solar radiation, ambient temperature,
humidity, wind speed and sunshine duration are among the vital input parameters.
These parameters play an important role in PV systemperformance. Instruments such
as a Pyranometer, Pyrheliometer and two-axis tracker must be used tomeasure global
and direct solar radiation. However, in some cases these parameters are impractical
to obtain due to two main reasons:

1. The PV system is located in a remote or isolated area, where the required input
data is not available.

2. The high cost and complexity of the equipment needed to measure these param-
eters.

A review of the role of AI in weather forecasting will be provided in this section.
The main objective is to review some of the successfully implemented techniques
in the literature and to present some of our own techniques for predicting solar
radiation.
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3.1.1 Important Concepts

First, it is perhaps important to introduce a few key concepts related to the Sun,
which is often regarded as a giant thermonuclear reactor that runs on hydrogen fuel.
The Sun radiates energy in all directions in the form of electromagnetic radiation
[25]. When describing the Sun’s energy, there are four commonly used parameters
in the PV community:

• Solar Irradiance – This is a term that describes the intensity of solar power per
unit area. Its units are therefore in W/m2.

• Solar Irradiation – This is the total amount of solar energy collected per unit area
over time (Wh/m2).

• Insolation – This describes the amount of solar irradiation collected during one
day (kWh/m2/day).

• Solar Constant – This is the average amount of solar irradiance that arrives above
the Earth’s atmosphere, which is approximately (1353 W/m2) [25].

Consequently, due to atmospheric effects, there are four main types of solar radi-
ation, which are Direct, Diffuse, Reflected and Global radiation. Figure 2 illustrates
the various types of solar radiation. The global solar irradiation (GT ) on the Earth’s
surface is the sum of three main components:

GT = GB + GD + GR (1)

where GB, GD and GR are the direct, diffused and reflected solar radiations. On a
perfectly horizontal surface, GR is equal to zero, which means that GT = GB +GD .

Fig. 2 Different components of solar radiation.

On a clear day and when the Sun is directly overhead, almost 70% of the incident
solar radiation reaches the Earth’s surface. The magnitude of solar radiation that is
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scattered or absorbed depends on the amount of atmosphere it must travel before
reaching the Earth’s surface [25]. Consequently, Air Mass (AM) depicts the relative
distance that solar radiation must travel to reach the Earth’s surface. Thus, AM =
1/cosθ = secθ, where θ is the zenith angle, as shown in figure 3. Similarly, Air Mass
One (AM1) refers to the thickness of the atmosphere a sunbeam passes through at
normal incidence to the Earth’s surface. A list of accepted values of solar flux at
AM1 can be found in [25], where the direct solar radiation at standard sea level is
considered 0.930 kW/m2.

Fig. 3 Explanation of AM0, AM1 and AM(secθ)

Mathematically, we are able to predict the intensity of the Sun’s energy arriving
at a point on Earth using the Meinel and Meinel approximation [26]:

I = 1.353 × 0.7(cosecα)
0.678

(2)

where cosecα = 1/sinα. The solar latitude, α, is the angle between the Sun’s rays
and the horizon. Thus, the light intensity is maximum when α = 90o. Therefore,
from equation 2, Imax = 0.95kWm−2 [27].

Experimentally, the measurement of solar irradiance requires specialist equip-
ment. For example, to measure global solar radiation, a Pyranometer is needed,
which is usually mounted horizontally away from tall objects that may obstruct its
field of view. Since the Sun contains a spectrum of different wavelengths, the best
instruments are designed to respond equally to all wavelengths. Due to its ease of
use, Pyranometers are widely used for collecting the vast majority of solar insolation
data [25].

Furthermore, a ring-shaped hoop may be added to the Pyranometer in order to
exclude direct sunlight. This process permits the measurement of diffuse sunlight.
When this reading is subtracted from the data collected by a standard Pyranometer,
the result is the direct solar radiation. This instrument is called the Shaded-ring
Pyranometer [25].
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Similarly, to measure direct solar radiation, a Pyrheliometer is used. The Pyrhe-
liometer has a small field of view, which is approximately 6°. It is usually mounted
onto a dual axis Sun tracker in order to continuously measure the Sun’s direct normal
radiation. Pyrheliometers are often needed to predict the performance of concentrator
photovoltaic systems, which also require the use of dual axis trackers [25].

3.1.2 Machine Learning for Weather Forecasting

This section deals with how Machine Learning techniques can be used for the
prediction solar radiation. In [8], Khatib et al. investigated the use of four ANN
techniques for predicting the hourly global and diffused solar radiations for the
city of Kuala Lumpur. The four techniques were the generalized regression neural
network (GRNN), the feed-forward back propagation neural network (FFNN), the
cascade-forward back propagation neural network (CFNN) and the Elman back
propagation neural network. Eight variables were used as input parameters into
the networks. These were the hour, day, month, latitude, longitude, temperature,
humidity and daily sunshine hours ratio. The networks were trained using 80% of
the artificially generated data, while the remaining 20% was used to test the trained
network. According to their study, the GRNN technique provided better prediction
results in comparison to the other techniques.

The literature provides other examples of using the ANN technique for predicting
global solar radiation. For example, Mohandes et al. in [28] used ANN for predicting
global solar radiation in Saudi Arabia. The input parameters to the network were
latitude, longitude, altitude and sunshine duration. Their overall network consisted of
4 input neurons, 10 hidden neurons and 1 output neuron. Their results showed aMean
Absolute Percentage Error (MAPE) of 6.5% < MAPE < 19.1%. In the literature,
MAPE < 10% often means high prediction accuracy, while 10% < MAPE < 20%
means good prediction. It is usually agreed that MAPE > 50% means inaccurate
forecasting.

Similarly, Rehman and Mohandes in [29] used ANNs with four input parameters
(day, maximum air temperature, mean air temperature, relative humidity) to estimate
diffuse solar radiation for the city of Abha in Saudi Arabia. Furthermore, Lazzús et
al. [30] estimated hourly global solar radiation for the city of La Serena in Chile
using an ANN with four inputs, which were wind speed, humidity, air temperature
and soil temperature. Khatib et al. also used the feed forward multilayer perception
model to determine the global and diffuse radiation in Malaysia using four input
parameters to the network: longitude, latitude, day number and sunshine ratio [31].

Another ANN forecasting method was developed by Mellit and Pavan for the city
of Trieste in Italy [32]. Their network aimed to predict the hourly solar radiation
values for the next day. Their MLP consisted of three input parameters, a hidden
layer and 24 neurons at the output. According to their investigations, the best MLP
architecture was obtained with two hidden layers, whereby the first layer contained
11 neurons, while the second contained 17 neurons. The input parameters were the
mean daily solar irradiance, G(t), the mean daily air temperature, T(t) and the day
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of the month, t. There were 24 output neurons, which corresponded to the solar
radiation values for each hour of the next day. The correlation coefficient between
experimental and predicted values varied between 95% (for cloudy days) and 98%
(for sunny days). A thorough review of machine learning techniques can be found in
the articles by Yadav and Mellit in [7, 33].

Similarly, we have applied a supervised learning technique for predicting the solar
irradiation levels for a location in the city of Beijing, China. Beijing Sunda Solar
Energy Technology Company collected the data over the period of two years [34].
Consequently, we were able to design a Support Vector Machine (SVM) regression
model that is able to predict, to a certain extent, the irradiation levels for the next
couple of days. The data collected consisted of solar radiation levels for the months
of January and July of 2007, with measurements taken for the whole 31 days of each
month in intervals of one hour. Based on that, we designed a SVM model that took
as inputs the radiation level of previous days in order to predict the radiation levels
of the next day.

Given this model, different time horizons were tested, in which the algorithm
could consider the solar radiation levels of either one, three, or five previous days
in order to predict the levels of the next day. The approach that yielded the best
results was considering the previous three days. In addition, the dataset was split
into training and test data, in which 51 days were utilized to train the network and
the remaining 7 days were used to test it (some days were not accounted because of
the time horizon).

Figure 4 shows our results of the proposed solution using the best approach for
one week of test data. Both the real and predicted values of solar radiation are
shown. A comparison with other regression techniques was performed, including
the Regression Tree and the Tree Ensemble. It was found that the SVM technique
provided best fit with the actual data, whereby the Root Mean Square Error (RMSE)
was 12.41% and the Mean Absolute Error (MAE) was 6.95%. A summary of the
results is presented in table 1.

Model RMSE(%) MAE(%)

SVM 12.41 6.95
Regression Tree 21.36 11.72
Tree Ensemble 22.46 11.71

Table 1 Comparison between different regression methods

3.2 Modelling of Solar Cells

A mathematical model that accurately describes a solar cell is an invaluable tool
for better understanding the characteristics, performance and optimization of a PV
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Fig. 4 Predictions of the SVMmodel using data from 3 previous days to predict the solar radiation
levels of the next day

cell system. Consequently, having introduced the conventional and AI techniques
for solar radiation forecasting, it is now important to familiarise the reader with the
concept of a solar cell.

3.2.1 Solar Cell Theory

A solar cell is a basic device that is used to convert the Sun’s energy into elec-
tricity. Ultimately, semiconductor materials are commonly used for the purpose of
producing currents and voltages as a result of the absorption of sunlight, which is a
phenomenon known as the photovoltaic effect. Most solar cells are fabricated from
eithermonocrystalline or polycrystalline silicon (Si)materials. In itsmost basic form,
a solar cell consists of a pn junction diode. Typical solar cell efficiencies range from
18% for polycrystalline to 24% from highly efficient monocrystalline technologies.
These high end devices typically include special light trapping structures that absorb
as many of the incident photons as possible.

Figure 5 shows the basic operation principles of a solar cell, which was adopted
from [27]. Both drift and diffusion of carriers takes place across the depletion region
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of width, W . The built-in electric field E0 in this depletion layer prevents further
diffusion of minority carriers. The finger electrodes on the surface of the n-type
semiconductor material allows light to penetrate into the device. Furthermore, these
electrodes result in a small series resistance. The photogenerated electron hole pairs
in the depletion region become separated by the built-in electric field, E0. Through
the process of drift, electrons reach the neutral n-region and make it negative by
an amount of charge −q. Similarly, holes drift to the p-region, which effectively
turns that region more positive. Consequently, an open circuit voltage, Voc , develops
between the terminals of the device, whereby the p-region is positive with respect
to the n-region. The total current flowing through a solar cell can determined using
Kirchhoff’s law, whereby:

I = Iph − Id (3)

Here, Iph is the photocurrent, Td is the diode current, which is proportional to the
saturation current by the following relationship:

Id = Io × (eV/ηVt − 1) (4)

where Io is the reverse saturation current, V is the voltage imposed on the diode
and Vt is the thermal voltage, Vt = kT/q, where k is the Boltzmann constant, q is
the charge and T is the temperature. Similarly, the diode ideality factor, η, typically
depends on the type of solar cell technology used. For the case of monocrystalline
silicon, this is usually η = 1.2 [35].

Fig. 5 The basic principle of operation of the solar cell, as depicted by Kasap in [27].

In reality, photogenerated electrons need to travel across a semiconductor region
in order to be collected by the nearest electrode. Consequently, an effective series
resistance, Rs , is introduced in the photovoltaic circuit. Similarly, photogenerated
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carriers flow through the crystal surfaces or through grain boundaries in polycrys-
talline devices. These effects can be described in terms of a shunt resistance, Rp ,
which drives photocurrent away from the load, RL . Consequently, the equivalent
electrical circuit representation of a typical solar cell can be modelled as shown in
figure 6 [27, 36].

Fig. 6 Electrical circuit representation of (a) an ideal solar cell and (b) practical solar cell with
series and shunt resistances.

Thus, from figure 6, an expression for the total output current of the cell, I, can
be deduced:

I = Iph − I0(eq(V+IRs )/ηkT − 1) − ((V + IRs)/Rp) (5)

where V is the terminal voltage of the module, q is the electric charge, k is the
Boltzmann constant and T is the cell temperature in Kelvins, K. Consequently, we
can determine the I − V characteristics of a solar cell as a function of input solar
radiation, series resistance and shunt resistance.

3.2.2 Machine Learning for Solar Cells

The accuratemodelling of a solar cell involves the prediction of five important param-
eters. These are the diode ideality factor, diode saturation current, series resistance,
shunt resistance and photo-generated current. Numerical and analytical techniques
have been proposed to extract these parameters. However, since the I−V relationship
is highly non-linear, many algorithms suffered from drawbacks. For example, the
non-linear least error squares approximation approach by Easwarakhanthan et al.
was strongly dependent on the choice of initial values [37]. Other analytical methods
suffer from heavy computation complexity, algebraic manipulation and curve fitting
[38]. Consequently, we will examine the machine leaning techniques that can be used
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for parameter extraction. We will focus on three techniques, which are the Simulated
Annealing approach, the Harmony Search approach and the use of ANNs.

Among the successful techniques that have been proposed is a neural network
method byKaratape et al. [39]. Their research relied on two different approaches. The
first involves generating I − V curves using the Sandia National Laboratory (SNL)
PV performance model for different operating temperatures and solar irradiation
[40]. Later, five points are chosen from these I − V curves, which are located at
V = 0,Voc/2,Vmp, ((Voc + Vmax)/2),Voc . Here, Voc is the open-circuit voltage and
Vmax is the maximum voltage. According to Sandia, these five points represent an
accurate representation of the I − V curve.

Karatape et al. then trained the neural network with 191 operating conditions
of temperature and radiation. The five solar cell parameter were determined using
equation 5 and the solar cell equations in SNL. Subsequently, the five extracted
parameters were then fed into the one diode solar cell model to obtain the I − V
characteristics of a PV module, as depicted in the figure 7.

Fig. 7 PV model approach that was adopted by [38]

The second approach involved generating the I − V curves experimentally and
determining the five operating points using the SNL model. This was done using
a solar panel, an electronic load, a computer controlled I − V tracer and a weather
station. Different values of irradiance and temperature were obtained by triggering
the I − V tracing at different times throughout the day.

The neural network was trained to identify the five equivalent circuit parameters
from 41 I−V curves. The network was tested on 8 curves. Despite the ease of setting
up this experimental facility, a drawback of this technique is that it was not possible
to decouple the effects of temperature and radiation. For example, it was not possible
to determine the percentage error at a module temperature of 25oC and an irradiation
level of 850 W/m2, since irradiation levels caused an increase inmodule temperature.
Nevertheless, a percentage error of 1.2 % in Vmp at an irradiation level of 851 W/m2
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and a temperature of 46.7o C was achieved, which is approximately three times more
precise than conventional model described by the Townsend equations in [41, 42].

Other machine learning techniques include the simulated annealing approach by
El-Naggar et al. [43], which is comparedwith theGA and PSO prediction techniques.
An objective function was defined and minimised. Their results were compared with
experiments and a Root Mean Square Error (RMSE) of 0.0017 was achieved for the
single diode solar cell model.

In comparison, Askarzadeh et al. showed that the Harmony Search (HS) optimi-
sation process provides better results [44]. Here, HS is an optimization technique that
aims to imitate the improvisation process of musicians. According to their research,
an objective function based on the single diode model was minimised with respect to
a particular range. Consequently, the HS technique was able to extract the five solar
cell parameters with a lower RMSE than the SA technique proposed by El-Naggar
by a factor of 0.075.

3.3 Sizing of PV Systems

Determining the optimum size of a PV power plant for a particular application
in order to yield the best return on investment (ROI) is of paramount economic
importance. There are three main methods for sizing PV systems, which rely on
empirical, analytical and numerical techniques. However, the weather data for the
site where the PV system will be located is necessary in order to ensure that the
sizing method is accurate. Consequently, these techniques are not effective for PV
system sizing applications in remote or isolated locations, where the required data is
not available. Thus, to overcome this hindrance, AI techniques may be used.

In essence, sizing a PV system represents an important part of systems design.
In addition to the weather data, a system designer must understand the end user
requirements and be aware of any government incentives or policies. Generally,
system design entails the optimum selection of the number of solar cell panels, the
size of the storage battery, the regulator and the inverter. The system designer must
also be aware of the application of the PV system. For example, will the system be
used for the electrification of a village, or for a telecommunications application, or
for water pumping? To avoid economic waste, PV system sizing is an optimisation
process that aims to meet a certain load requirement for the expected lifetime of the
system [45].

A review of the different methods and techniques for sizing PV systems will be
provided in this section. Particular attention is attributed to determining the Loss
of Load Probability (LLP) of a stand-alone PV system. Comparisons between AI
predicted results with other sizing methods will be made in this section.
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3.3.1 Introduction to PV Systems

A photovoltaic array (or string) is a combination of photovoltaic modules that are
connected in series in order to obtain the desired system voltage. Subsequently,
these strings are connected in parallel to increase the system’s output power [46].
A photovoltaic installation mainly consists of an array of photovoltaic modules or
panels, an inverter, batteries (for off grid) and interconnection wires. However, the
balance of system (BOS) components in a PV system include mounting materials
for the modules, wires, distribution panel, junction box, lighting protectors, ground-
ing connections, battery fuses, battery cables and battery containers. In general,
PV systems can be classified into grid connected or autonomous (or stand-alone)
systems.

A standalone or autonomous PV system is not connected to the national electricity
grid. Such systems were the first application of PV, where there was no electricity
supply from a national grid. Applications of these systems range frompocket chargers
to large water pumping systems. Figure 8 illustrates the main components of this
system, which are:

Fig. 8 Stand-alone or autonomous PV System. The illustration shows two possible configurations.
In the DC coupled configuration, DC loads are directly connected to the charge controller. In
contrast, AC loads require an inverter

• PV Module – An interconnected array of solar cells.
• Charge Controller – This is also known as a charger regulator, which aims to

control the rate of current flow into and out from storage batteries. This is done
to prevent overcharging and deep discharging of the battery, which can severely
reduce battery performance and lifetime.

• BatteryBank -Batteries are the heart of an autonomous solar electric system. They
are the reservoir for storing electrical energy. The size of a battery is measured
in terms of its storage capacity in Ampere-Hours (Ahr). There are different types
of battery technologies, including Lithium Ion, Lead Acid, Nickel Cadmium and
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many others. The depth of discharge (DOD) is the amount a solar battery is
discharged.

• Inverter - This device is responsible for converting the PV panel’s direct current
(DC) into an alternating current (AC) that can be fed into a commercial electrical
grid, or to be used in a stand-alone system.

• Loads – These can be a combination of either DC or AC appliances that are
connected to the system. The vast majority of present day appliances require AC
power. DC coupled systems do not require AC converters, which reduces overall
system cost and increases system efficiency.

3.3.2 Sizing Stand Alone PV Systems

In this chapter, particular attention will be devoted to sizing stand-alone PV systems.
Sizing of Stand Alone PV (SAPV) Systems can be done in a number of different
ways, as depicted in figure ??. The first is called the Intuitive Method, which relies
on the PV designer’s experience in sizing the PV generator and the storage system.
Another is called the Numerical Method, which is more accurate than the Intuitive
Method, but requires a large dataset of solar radiation values, which makes them
complex to use [47]. Similarly, the Analytical Method involves describing the sizing
problem as a function of the Loss of Load Reliability (LLR). In this section, we shall
illustrate the most commonly used techniques in the literature for PV system sizing.

Fig. 9 Standalone PV System sizing techniques.

In brief, the Intuitive Method in-
volves estimating the daily load de-
mand, optimizing the tilt angle, calcu-
lating the size of the PV array and deter-
mining the size of the battery bank. By
using simple mathematical equations,
the size of the PV array and the capacity
of the storage battery can be calculated
[45]. Similarly, the size of the inverter
can be determined by considering its
efficiency and the maximum AC power
it can deliver. This technique has been
used by Ahmad for the optimum siz-
ing of residential PV systems in Egypt
[48] and by Bhuiyan et al. for the same
application in Bangladesh [49].

The Intuitive Method first relies on estimating the daily load demand and opti-
mizing the tilt angle before calculating the PV array size and battery capacity. The
equations for calculating these two parameters are similar to those in Sharma et al.
[45]. Figure 10 provides a summary of the main steps involved in sizing a stand-
alone PV system intuitively. From figure 10, ηpv is the instantaneous PV generator
efficiency, APV is the area of a single module used in a system, Gt is the global
irradiance incident on the titled plane and N is the number of modules. Moreover,
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Naut is the number of days of autonomy and DODmax is the maximum depth-of-
discharge of the batteries. The number of batteries (parallel) is Nbatt and Spk−hr is
the peak Sun hours for the worst calendar month of the year.

After sizing the PV panel array and the battery bank, the remaining PV system
components need to be configured. For example, the simplest method to calculate
the size of an inverter is to take the PV module peak power and divide this by the
nominal AC efficiency of the inverter, Pinv,AC = Ppv/ηinv [26]. Similarly, charge
controllers and cable coss-sections need to be sized accordingly. In this case, cable
cross-sections need to be designed to deliver the least amount of voltage drop. Article
690 in the National Electric Code (NEC) describes the recommendations for PVwire
gauge sizing the current protection mechanisms necessary in a PV system [50].

As previously mentioned, the intuitive sizing method may lead to over (or under)
sizing of the standalone PV system, which might lead to an increased system capital
cost, as well as increased operational and maintenance costs. As a result, this method
is only suitable for an initial approximation of PV system size. Other approaches that
combine both analytical and experimental methods for PV system sizing have been
proposed by Nikhil et al. for a system in India [51]. Their work relies on developing
an iterative algorithm that takes into consideration important parameters that are
often neglected in an optimisation algorithm, such as autonomy, system efficiencies,
maximum depth of discharge of battery, cut-in and cutoff voltages of the battery,
cable power loss, PV mismatch losses and dust factor. Their results were validated
using experimental data and compared with other sizing methods.

Advanced simulation software can also be used for PV system sizing. Currently,
there are software tools that help engineers design PV systems. Examples of these
tools include RETScreen, Homer, PVSyst, PV*Sol and Polysun. The majority of
these tools rely on a combination of mathematical and analytical methods for PV
Systems sizing. A system designer may also use these tools in combination with one
another in order to meet a particular design requirement.

3.3.3 AI and PV Sizing

Among the first efforts into using neural networks for PV system design was per-
formed by Hontoria et al. in 2005 [52, 19]. A comparison between conventional
sizing methods and ANN is provided in [53]. In the case of the Hontoria paper, a
parameter known as the loss of load probability, LLP, was simulated for different
cities in Spain. The LLP is defined as the ratio between the energy deficit and the
energy demand on the load over a long period of time. The LLP represents how often
the PV and/or storage system will not be able to satisfy the load. Thus,

LLP =

∫ t

0 Energy De f icit∫ t

0 Energy Demand
(6)

For the case of Hontoria et al., the aim of their research was to be able to generate
any LLP curve for any city in Spain. Thus, the LLP was simulated for different



18

Fig. 10 Flow chart for the intuitive method of PV sizing.
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cities in Spain. Naturally, each city has a different clearness index throughout the
year. Consequently, these two parameters in addition to the battery capacity were
fed into a multilayer perceptron (MCP) neural network. Different tests were carried
out by the authors to investigate the best number of neurons in the hidden layer. The
network was trained on the data of seven Spanish cities and were validated with the
data from 3 other cities. Their test showed that 9 hidden nodes were needed in order
to obtain the value of the generator capacity ratio, CA.

The use of neural networks for SAPV system sizing has also been investigated
extensively by Mellit et al. [54, 55, 56]. Their technique involved feeding a number
of numerically calculated parameters into the neural network in order to predict
the number of solar PV modules and storage capacity needed to satisfy a given
consumption. A block diagram of their system is shown in figure 11.

Fig. 11 Flowchart for estimating of the sizing parameters of the SAPV system de-fined by Mellit
et al. in [54]

In their model, the inputs are the latitude and longitude of the site, while the
outputs are two hybrid-sizing parameters, often referred to as the optimum sizing
coefficients of the PV panels, fp , and the battery capacity, up . Furthermore, The
LLP is the Loss of Load Parameter, whereas CA is defined as the ratio between the
mean PV array energy production and the mean load energy demand. It is defined
as the ratio of the average energy output of the PV generator in the month with worst
solar radiation to the average consumption of the load. The storage capacity, Cs , is
defined as the maximum energy that can be taken out from the accumulator divided
by the mean load energy demand [47].

Thus:

CA =
ηpv AGav

L
(7)

CS =
C
L

(8)

where A is the PV-array area, ηpv is the PV array efficiency, Gavis the mean daily
irradiation on the PV-array, L is the mean daily energy consumption and C is the
useful accumulator capacity. At the output of the system the authors deduce the PV
array area (APV ) as well as the useful battery capacity (CUP).

Additional AI methods include an investigation by Salah et al., which makes use
of fuzzy logic to optimize the PV panel surface area and the battery capacity in a
standalone PV system in the region of Sfax, Tunisia [57]. Fuzzy logic was developed



20

usingMATLAB, whereby the energy demand of the load and the monthly average of
daily solar radiation were used as inputs, whereas the PV panel surface area and the
battery capacity were the outputs. The battery’s State of Charge (SOC) termwas used
as the objective function of the optimization problem. Furthermore, the use of hybrid
optimisation techniques involving genetic algorithms (GA) and neural networks were
also investigated by Mellit in the optimal sizing problem of stand-alone photovoltaic
systems for remote areas [58, 59]. A complete review of AI techniques for PV sizing
is provided by the same author in [56], as well as by Khatib et al. in [60].

4 Summary

In this chapter, a literature review on the applications of artificial intelligence (AI)
in the field of photovoltaics has been presented. Various AI techniques have been
applied to three main PV applications, which include (1) Forecasting and modelling
of meteorological data, (2) Basic modelling of solar cells and (3) Sizing of photo-
voltaic systems. In the case of solar radiation forecasting, it has been shown that AI
can be used for the accurate prediction of solar radiation in the city of Beijing. Other
scholars in the literature have successfully used various AI techniques for predict-
ing the weather conditions of any geographic location. Consequently, AI techniques
can then be extended to any geographic location. Furthermore, the estimation of
energy production for a PV system has been shown using both conventional and AI
techniques. Again, the results show the accuracy of AI techniques in comparison to
analytical methods. Consequently, the chapter has illustrated how AI can be used to
not only predict, but to accurately fill in the missing gaps of important information.
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