78 research outputs found

    Constrictive bronchiolitis obliterans in patient with Castelman’s disease

    Get PDF
    A 37-year-old woman with hialin- vascular type Castelman’s disease (CD) localised in the retroperitoneal region, incompletely resected, developed progressive dyspnoea. The chest radiograph taken 3 months before the operation was normal. The chest CT scan revealed diffused bronchiectases, hyperinflation and air trapping. Pulmonary function tests disclosed severe obstructive impairment with hyperinflation. The bronchoscopic examination of the bronchial tree was normal. Cultures of sputum, bronchial washing and blood were negative. No pemphigus antibodies were found. Mycoplasmal, chlamydial and viral infections were excluded. Histological examination of specimens obtained by open lung biopsy revealed bronchiolar inflammation, submucosal bronchial fibrosis with obliteration of bronchiolar lumen. Constrictive bronchiolitis obliterans (CBO) was diagnosed. Despite slight clinical and spirometric improvements that were achieved due to corticosteroid therapy, one year later she died as a result of respiratory failure. It is widely known that patients with CD develop CBO during the course of paraneoplastic pemphigus. However we present the case of CBO and CD but without any symptoms of this condition

    Adipose triglyceride lipase (ATGL) expression in human skeletal muscle is type I (oxidative) fiber specific

    Get PDF
    Accumulation of triacylglycerol (TAG) and lipid intermediates in skeletal muscle plays an important role in the etiology of insulin resistance and type 2 diabetes mellitus. Disturbances in skeletal muscle lipid turnover and lipolysis may contribute significantly to this. So far, knowledge on the regulation of muscle lipolysis is limited. Recently the identification of a new lipase was reported: adipose triglyceride lipase (ATGL). ATGL deficient animals show significant lipid accumulation in skeletal muscle, which may indicate that ATGL plays a pivotal role in skeletal muscle lipolysis. However, until now, it is still unknown whether ATGL protein is expressed in human skeletal muscle. Therefore, the aim of the present study was to investigate whether ATGL is expressed at the protein level in human skeletal muscle, and to examine whether its expression is fiber-type specific. To accomplish this, we established an imunohistochemical and immunofluorescent staining procedure to study ATGL protein expression in relation to fiber type in human vastus lateralis muscle of eight male subjects (BMI range: 21.0–34.5 kg/m2 and age: 38–59 years). In the present paper we report for the first time that ATGL protein is indeed expressed in human skeletal muscle. Moreover, ATGL is exclusively expressed in type I (oxidative) muscle fibers, suggesting a pivotal role for ATGL in intramuscular fatty acid handling, lipid storage and breakdown

    High-Dose Testosterone Propionate Treatment Reverses the Effects of Endurance Training on Myocardial Antioxidant Defenses in Adolescent Male Rats

    Get PDF
    This study was aimed at evaluation of changes in activities of selected antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) and contents of key nonenzymatic antioxidants (glutathione, protein thiol groups, and α- and γ-tocopherols) in the left heart ventricle of young male Wistar rats subjected to endurance training (treadmill running, 1 h daily, 5 days a week, for 6 weeks) or/and testosterone propionate treatment (8 or 80 mg/kg body weight, intramuscularly, once a week, for 6 weeks) during adolescence. The training alone increased the activities of key antioxidant enzymes, but lowered the pool of nonenzymatic antioxidants and enhanced myocardial oxidative stress as evidenced by elevation of the lipid peroxidation biomarker malondialdehyde. The lower-dose testosterone treatment showed mixed effects on the individual components of the antioxidant defense system, but markedly enhanced lipid peroxidation. The higher-dose testosterone treatment decreased the activities of the antioxidant enzymes, lowered the contents of the nonenzymatic antioxidants, except for that of γ-tocopherol, reversed the effect of endurance training on the antioxidant enzymes activities, and enhanced lipid peroxidation more than the lower-dose treatment. These data demonstrate the potential risk to cardiac health from exogenous androgen use, either alone or in combination with endurance training, in adolescents

    Guidelines of the Polish Respiratory Society for diagnosis and treatment of idiopathic pulmonary fibrosis

    Get PDF
    Introduction: This document presents the guidelines of the Polish Respiratory Society (PTChP, Polskie Towarzystwo Chorób Płuc) for diagnosis and treatment of idiopathic pulmonary fibrosis (IPF), developed by a group of Polish experts.Material and methods: The recommendations were developed in the form of answers to previously formulated questions concer-ning everyday diagnostic and therapeutic challenges. They were developed based on a current literature review using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology.Results: We formulated 28 recommendations for diagnosis (8), pharmacological treatment (12) as well as non-pharma-cological and palliative therapy (8). The experts suggest that surgical lung biopsy (SLB) not be performed in patients with the probable usual interstitial pneumonia (UIP) pattern, with an appropriate clinical context and unanimous opinion of a  multidisciplinary team. The experts recommend using antifibrotic agents in IPF patients and suggest their use irrespective of the degree of functional impairment. As regards non-pharmacological and palliative treatment, strong re-commendations were formulated regarding pulmonary rehabilitation, oxygen therapy (in patients with chronic respiratory failure), preventive vaccinations as well as referring IPF patients to transplant centres. Table 1 presents an aggregate list of recommendations.Conclusions: The Polish Respiratory Society Working Group developed guidelines for IPF diagnosis and treatment

    Remodeling Lipid Metabolism and Improving Insulin Responsiveness in Human Primary Myotubes

    Get PDF
    OBJECTIVE: Disturbances in lipid metabolism are strongly associated with insulin resistance and type 2 diabetes (T2D). We hypothesized that activation of cAMP/PKA and calcium signaling pathways in cultured human myotubes would provide further insight into regulation of lipid storage, lipolysis, lipid oxidation and insulin responsiveness. METHODS: Human myoblasts were isolated from vastus lateralis, purified, cultured and differentiated into myotubes. All cells were incubated with palmitate during differentiation. Treatment cells were pulsed 1 hour each day with forskolin and ionomycin (PFI) during the final 3 days of differentiation to activate the cAMP/PKA and calcium signaling pathways. Control cells were not pulsed (control). Mitochondrial content, (14)C lipid oxidation and storage were measured, as well as lipolysis and insulin-stimulated glycogen storage. Myotubes were stained for lipids and gene expression measured. RESULTS: PFI increased oxidation of oleate and palmitate to CO(2) (p<0.001), isoproterenol-stimulated lipolysis (p = 0.01), triacylglycerol (TAG) storage (p<0.05) and mitochondrial DNA copy number (p = 0.01) and related enzyme activities. Candidate gene and microarray analysis revealed increased expression of genes involved in lipolysis, TAG synthesis and mitochondrial biogenesis. PFI increased the organization of lipid droplets along the myofibrillar apparatus. These changes in lipid metabolism were associated with an increase in insulin-mediated glycogen storage (p<0.001). CONCLUSIONS: Activation of cAMP/PKA and calcium signaling pathways in myotubes induces a remodeling of lipid droplets and functional changes in lipid metabolism. These results provide a novel pharmacological approach to promote lipid metabolism and improve insulin responsiveness in myotubes, which may be of therapeutic importance for obesity and type 2 diabetes

    Aerobic Training in Rats Increases Skeletal Muscle Sphingomyelinase and Serine Palmitoyltransferase Activity, While Decreasing Ceramidase Activity

    Get PDF
    Sphingolipids are important components of cell membranes that may also serve as cell signaling molecules; ceramide plays a central role in sphingolipid metabolism. The aim of this study was to examine the effect of 5 weeks of aerobic training on key enzymes and intermediates of ceramide metabolism in skeletal muscles. The experiments were carried out on rats divided into two groups: (1) sedentary and (2) trained for 5 weeks (on a treadmill). The activity of serine palmitoyltransferase (SPT), neutral and acid sphingomyelinase (nSMase and aSMase), neutral and alkaline ceramidases (nCDase and alCDase) and the content of sphingolipids was determined in three types of skeletal muscle. We also measured the fasting plasma insulin and glucose concentration for calculating HOMA-IR (homeostasis model assessment) for estimating insulin resistance. We found that the activities of aSMase and SPT increase in muscle in the trained group. These changes were followed by elevation in the content of sphinganine. The activities of both isoforms of ceramidase were reduced in muscle in the trained group. Although the activities of SPT and SMases increased and the activity of CDases decreased, the ceramide content did not change in any of the studied muscle. Although ceramide level did not change, we noticed increased insulin sensitivity in trained animals. It is concluded that training affects the activity of key enzymes of ceramide metabolism but also activates other metabolic pathways which affect ceramide metabolism in skeletal muscles

    Effect of ketogenic mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been increased interest in recent years in very low carbohydrate ketogenic diets (VLCKD) that, even though they are much discussed and often opposed, have undoubtedly been shown to be effective, at least in the short to medium term, as a tool to tackle obesity, hyperlipidemia and some cardiovascular risk factors. For this reason the ketogenic diet represents an interesting option but unfortunately suffers from a low compliance. The aim of this pilot study is to ascertain the safety and effects of a modified ketogenic diet that utilizes ingredients which are low in carbohydrates but are formulated to simulate its aspect and taste and also contain phytoextracts to add beneficial effects of important vegetable components.</p> <p>Methods</p> <p>The study group consisted of 106 Rome council employees with a body mass index of ≥ 25, age between 18 and 65 years (19 male and 87 female; mean age 48.49 ± 10.3). We investigated the effects of a modified ketogenic diet based on green vegetables, olive oil, fish and meat plus dishes composed of high quality protein and virtually zero carbohydrate but which mimic their taste, with the addition of some herbal extracts (KEMEPHY ketogenic Mediterranean with phytoextracts). Calories in the diet were unlimited. Measurements were taken before and after 6 weeks of diet.</p> <p>Results</p> <p>There were no significant changes in BUN, ALT, AST, GGT and blood creatinine. We detected a significant (p < 0.0001) reduction in BMI (31.45 Kg/m<sup>2 </sup>to 29.01 Kg/m<sup>2</sup>), body weight (86.15 kg to 79.43 Kg), percentage of fat mass (41.24% to 34.99%), waist circumference (106.56 cm to 97.10 cm), total cholesterol (204 mg/dl to 181 mg/dl), LDLc (150 mg/dl to 136 mg/dl), triglycerides (119 mg/dl to 93 mg/dl) and blood glucose (96 mg/dl to 91 mg/dl). There was a significant (p < 0.0001) increase in HDLc (46 mg/dl to 52 mg/dl).</p> <p>Conclusions</p> <p>The KEMEPHY diet lead to weight reduction, improvements in cardiovascular risk markers, reduction in waist circumference and showed good compliance.</p
    corecore