34,564 research outputs found

    Improving information filtering via network manipulation

    Get PDF
    Recommender system is a very promising way to address the problem of overabundant information for online users. Though the information filtering for the online commercial systems received much attention recently, almost all of the previous works are dedicated to design new algorithms and consider the user-item bipartite networks as given and constant information. However, many problems for recommender systems such as the cold-start problem (i.e. low recommendation accuracy for the small degree items) are actually due to the limitation of the underlying user-item bipartite networks. In this letter, we propose a strategy to enhance the performance of the already existing recommendation algorithms by directly manipulating the user-item bipartite networks, namely adding some virtual connections to the networks. Numerical analyses on two benchmark data sets, MovieLens and Netflix, show that our method can remarkably improve the recommendation performance. Specifically, it not only improve the recommendations accuracy (especially for the small degree items), but also help the recommender systems generate more diverse and novel recommendations.Comment: 6 pages, 5 figure

    Microstructure, magneto-transport and magnetic properties of Gd-doped magnetron-sputtered amorphous carbon

    Full text link
    The magnetic rare earth element gadolinium (Gd) was doped into thin films of amorphous carbon (hydrogenated \textit{a}-C:H, or hydrogen-free \textit{a}-C) using magnetron co-sputtering. The Gd acted as a magnetic as well as an electrical dopant, resulting in an enormous negative magnetoresistance below a temperature (T′T'). Hydrogen was introduced to control the amorphous carbon bonding structure. High-resolution electron microscopy, ion-beam analysis and Raman spectroscopy were used to characterize the influence of Gd doping on the \textit{a-}Gdx_xC1−x_{1-x}(:Hy_y) film morphology, composition, density and bonding. The films were largely amorphous and homogeneous up to xx=22.0 at.%. As the Gd doping increased, the sp2sp^{2}-bonded carbon atoms evolved from carbon chains to 6-member graphitic rings. Incorporation of H opened up the graphitic rings and stabilized a sp2sp^{2}-rich carbon-chain random network. The transport properties not only depended on Gd doping, but were also very sensitive to the sp2sp^{2} ordering. Magnetic properties, such as the spin-glass freezing temperature and susceptibility, scaled with the Gd concentration.Comment: 9 figure

    Integrable dispersionless KdV hierarchy with sources

    Full text link
    An integrable dispersionless KdV hierarchy with sources (dKdVHWS) is derived. Lax pair equations and bi-Hamiltonian formulation for dKdVHWS are formulated. Hodograph solution for the dispersionless KdV equation with sources (dKdVWS) is obtained via hodograph transformation. Furthermore, the dispersionless Gelfand-Dickey hierarchy with sources (dGDHWS) is presented.Comment: 15 pages, to be published in J. Phys. A: Math. Ge

    Morphology and thermal conductivity of model organic aerogels

    Get PDF
    The intersection volume of two independent 2-level cut Gaussian random fields is proposed to model the open-cell microstructure of organic aerogels. The experimentally measured X-ray scattering intensity, surface area and solid thermal conductivity of both polymeric and colloidal organic aerogels can be accounted for by the model.Comment: 5 pages. RevTex with 4 encapsulated figures. Higher resolution figures have been submitted for publication. To be published in Phys. Rev. E (Rapid Comm.). email, [email protected]

    Deriving N-soliton solutions via constrained flows

    Full text link
    The soliton equations can be factorized by two commuting x- and t-constrained flows. We propose a method to derive N-soliton solutions of soliton equations directly from the x- and t-constrained flows.Comment: 8 pages, AmsTex, no figures, to be published in Journal of Physics
    • …
    corecore