38,360 research outputs found
Development of a hybrid multi-scale simulation approach for spray processes
This paper presents a multi-scale approach coupling a Eulerian interface-tracking method and a Lagrangian particle-tracking method to simulate liquid atomisation processes. This method aims to represent the complete spray atomisation process including the primary break-up process and the secondary break-up process, paving the way for high-fidelity simulations of spray atomisation in the dense spray zone and spray combustion in the dilute spray zone. The Eulerian method is based on the coupled level-set and volume-of-fluid method for interface tracking, which can accurately simulate the primary break-up process. For the coupling approach, the Eulerian method describes only large droplet and ligament structures, while small-scale droplet structures are removed from the resolved Eulerian description and transformed into Lagrangian point-source spherical droplets. The Lagrangian method is thus used to track smaller droplets. In this study, two-dimensional simulations of liquid jet atomisation are performed. We analysed Lagrangian droplet formation and motion using the multi-scale approach. The results indicate that the coupling method successfully achieves multi-scale simulations and accurately models droplet motion after the EulerianâLagrangian transition. Finally, the reverse LagrangianâEulerian transition is also considered to cope with interactions between Eulerian droplets and Lagrangian droplets.This work was supported by the Engineering and Physical Sciences Research Council of the UK (grant number EP/L000199/1)
A Direct Elliptic Solver Based on Hierarchically Low-rank Schur Complements
A parallel fast direct solver for rank-compressible block tridiagonal linear
systems is presented. Algorithmic synergies between Cyclic Reduction and
Hierarchical matrix arithmetic operations result in a solver with arithmetic complexity and memory footprint. We provide a
baseline for performance and applicability by comparing with well known
implementations of the -LU factorization and algebraic multigrid
with a parallel implementation that leverages the concurrency features of the
method. Numerical experiments reveal that this method is comparable with other
fast direct solvers based on Hierarchical Matrices such as -LU and
that it can tackle problems where algebraic multigrid fails to converge
Radiance and Doppler shift distributions across the network of the quiet Sun
The radiance and Doppler-shift distributions across the solar network provide
observational constraints of two-dimensional modeling of transition-region
emission and flows in coronal funnels. Two different methods, dispersion plots
and average-profile studies, were applied to investigate these distributions.
In the dispersion plots, we divided the entire scanned region into a bright and
a dark part according to an image of Fe xii; we plotted intensities and Doppler
shifts in each bin as determined according to a filtered intensity of Si ii. We
also studied the difference in height variations of the magnetic field as
extrapolated from the MDI magnetogram, in and outside network. For the
average-profile study, we selected 74 individual cases and derived the average
profiles of intensities and Doppler shifts across the network. The dispersion
plots reveal that the intensities of Si ii and C iv increase from network
boundary to network center in both parts. However, the intensity of Ne viii
shows different trends, namely increasing in the bright part and decreasing in
the dark part. In both parts, the Doppler shift of C iv increases steadily from
internetwork to network center. The average-profile study reveals that the
intensities of the three lines all decline from the network center to
internetwork region. The binned intensities of Si ii and Ne viii have a good
correlation. We also find that the large blue shift of Ne viii does not
coincide with large red shift of C iv. Our results suggest that the network
structure is still prominent at the layer where Ne viii is formed in the quiet
Sun, and that the magnetic structures expand more strongly in the dark part
than in the bright part of this quiet Sun region.Comment: 10 pages,9 figure
Tilt-Induced Anisotropic to Isotropic Phase Transition at
A modest in-plane magnetic field \Bpar\ is sufficient to destroy the
fractional quantized Hall states at and 7/2 and replace them with
anisotropic compressible phases. Remarkably, we find that at larger \Bpar\
these anisotropic phases can themselves be replaced by isotropic compressible
phases reminiscent of the composite fermion fluid at . We present
strong evidence that this transition is a consequence of the mixing of Landau
levels from different electric subbands. We also report surprising dependences
of the energy gaps at and 7/3 on the width of the confinement
potential.Comment: Accepted by Phys. Rev. Lett. This is a final version with rewritten
introduction and modified figure
Physics of puffing and microexplosion of emulsion fuel droplets
The physics of water-in-oil emulsion droplet microexplosion/puffing has been investigated using high-fidelity interface-capturing simulation. Varying the dispersed-phase (water) sub-droplet size/location and the initiation location of explosive boiling (bubble formation), the droplet breakup processes have been well revealed. The bubble growth leads to local and partial breakup of the parent oil droplet, i.e., puffing. The water sub-droplet size and location determine the after-puffing dynamics. The boiling surface of the water sub-droplet is unstable and evolves further. Finally, the sub-droplet is wrapped by boiled water vapor and detaches itself from the parent oil droplet. When the water sub-droplet is small, the detachment is quick, and the oil droplet breakup is limited. When it is large and initially located toward the parent droplet center, the droplet breakup is more extensive. For microexplosion triggered by the simultaneous growth of multiple separate bubbles, each explosion is local and independent initially, but their mutual interactions occur at a later stage. The degree of breakup can be larger due to interactions among multiple explosions. These findings suggest that controlling microexplosion/puffing is possible in a fuel spray, if the emulsion-fuel blend and the ambient flow conditions such as heating are properly designed. The current study also gives us an insight into modeling the puffing and microexplosion of emulsion droplets and sprays.This article has been made available through the Brunel Open Access Publishing Fund
Tests of a Novel Design of Resistive Plate Chambers
A novel design of Resistive Plate Chambers (RPCs), using only a single
resistive plate, is being proposed. Based on this design, two large size
prototype chambers were constructed and were tested with cosmic rays and in
particle beams. The tests confirmed the viability of this new approach. In
addition to showing an improved single-particle response compared to the
traditional 2-plate design, the novel chambers also prove to be suitable for
calorimetric applications
- âŚ