50 research outputs found

    Footprints of the Beyond in flavor physics: Possible role of the Top Two Higgs Doublet Model

    Get PDF
    The B-factories results provide an impressive confirmation of the Standard Model (SM) description of flavor and CP violation. Nevertheless, as more data were accumulated, deviations in the 2.5-3.5 sigma range have emerged pointing to the exciting possibility of new CP-odd phase(s) and flavor violating parameters in B-decays. Primarily this seems to be the case in the time dependent CP asymmetries in penguin dominated modes (e.g. B -> phi (eta') Ks). We discuss these and other deviations from the SM and, as an illustration of possible new physics scenarios, we examine the role of the Top Two Higgs Doublet Model. This is a simple extension of the SM obtained by adding second Higgs doublet in which the Yukawa interactions of the two Higgs doublets are assigned in order to naturally account for the large top-quark mass. Of course, many other extensions of the Standard Model could also account for these experimental deviations. Clearly if one takes these deviations seriously then some new particles in the 300 GeV to few TeV with associated new CP-odd phase(s) are needed.Comment: 40 pages, 17 figures (png format), uses pdflate

    Challenging SO(10) SUSY GUTs with family symmetries through FCNC processes

    Full text link
    We perform a detailed analysis of the SO(10) SUSY GUT model with D3 family symmetry of Dermisek and Raby (DR). The model is specified in terms of 24 parameters and predicts, as a function of them, the whole MSSM set of parameters at low energy scales. Concerning the SM subset of such parameters, the model is able to give a satisfactory description of the quark and lepton masses, of the PMNS matrix and of the CKM matrix. We perform a global fit to the model, including flavour changing neutral current (FCNC) processes Bs --> mu+ mu-, B --> Xs gamma, B --> Xs l+ l- and the B(d,s) - bar B(d,s) mass differences Delta M(d,s) as well as the flavour changing (FC) process B+ --> tau+ nu. These observables provide at present the most sensitive probe of the SUSY mass spectrum and couplings predicted by the model. Our analysis demonstrates that the simultaneous description of the FC observables in question represents a serious challenge for the DR model, unless the masses of the scalars are moved to regions which are problematic from the point of view of naturalness and probably beyond the reach of the LHC. We emphasize that this problem could be a general feature of SUSY GUT models with third generation Yukawa unification and weak-scale minimal flavour violation.Comment: 1 + 37 pages, 5 figures, 11 tables. v3: minor typos fixed. Matches JHEP published versio

    Stringy Instantons and Quiver Gauge Theories

    Get PDF
    We explore contributions to the 4D effective superpotential which arise from Euclidean D3 branes (``instantons'') that intersect space-filling D-branes. These effects can perturb the effective field theory on the space-filling branes by nontrivial operators composed of charged matter fields, changing the vacuum structure in a qualitative way in some examples. Our considerations are exemplified throughout by a careful study of a fractional brane configuration on a del Pezzo surface.Comment: 30 pages, 4 figures; v2: reference added; v3: confusing minor error in axion charges fixed (thanks to D. Green for pointing it out

    Mixed Wino Dark Matter: Consequences for Direct, Indirect and Collider Detection

    Full text link
    In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass unification, the predicted relic abundance of neutralinos usually exceeds the strict limits imposed by the WMAP collaboration. One way to obtain the correct relic abundance is to abandon gaugino mass universality and allow a mixed wino-bino lightest SUSY particle (LSP). The enhanced annihilation and scattering cross sections of mixed wino dark matter (MWDM) compared to bino dark matter lead to enhanced rates for direct dark matter detection, as well as for indirect detection at neutrino telescopes and for detection of dark matter annihilation products in the galactic halo. For collider experiments, MWDM leads to a reduced but significant mass gap between the lightest neutralinos so that chi_2^0 two-body decay modes are usually closed. This means that dilepton mass edges-- the starting point for cascade decay reconstruction at the CERN LHC-- should be accessible over almost all of parameter space. Measurement of the m_{\tz_2}-m_{\tz_1} mass gap at LHC plus various sparticle masses and cross sections as a function of beam polarization at the International Linear Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in the universe.Comment: 29 pages including 19 eps figure

    Exploring the BWCA (Bino-Wino Co-Annihilation) Scenario for Neutralino Dark Matter

    Get PDF
    In supersymmetric models with non-universal gaugino masses, it is possible to have opposite-sign SU(2) and U(1) gaugino mass terms. In these models, the gaugino eigenstates experience little mixing so that the lightest SUSY particle remains either pure bino or pure wino. The neutralino relic density can only be brought into accord with the WMAP measured value when bino-wino co-annihilation (BWCA) acts to enhance the dark matter annihilation rate. We map out parameter space regions and mass spectra which are characteristic of the BWCA scenario. Direct and indirect dark matter detection rates are shown to be typically very low. At collider experiments, the BWCA scenario is typified by a small mass gap m_{\tilde Z_2}-m_{\tilde Z_1} ~ 20-80 GeV, so that tree level two body decays of \tilde Z_2 are not allowed. However, in this case the second lightest neutralino has an enhanced loop decay branching fraction to photons. While the photonic neutralino decay signature looks difficult to extract at the Fermilab Tevatron, it should lead to distinctive events at the CERN LHC and at a linear e^+e^- collider.Comment: 44 pages, 21 figure

    Collider and Dark Matter Phenomenology of Models with Mirage Unification

    Get PDF
    We examine supersymmetric models with mixed modulus-anomaly mediated SUSY breaking (MM-AMSB) soft terms which get comparable contributions to SUSY breaking from moduli-mediation and anomaly-mediation. The apparent (mirage) unification of soft SUSY breaking terms at Q=mu_mir not associated with any physical threshold is the hallmark of this scenario. The MM-AMSB structure of soft terms arises in models of string compactification with fluxes, where the addition of an anti-brane leads to an uplifting potential and a de Sitter universe, as first constructed by Kachru {\it et al.}. The phenomenology mainly depends on the relative strength of moduli- and anomaly-mediated SUSY breaking contributions, and on the Higgs and matter field modular weights, which are determined by the location of these fields in the extra dimensions. We delineate the allowed parameter space for a low and high value of tan(beta), for a wide range of modular weight choices. We calculate the neutralino relic density and display the WMAP-allowed regions. We show the reach of the CERN LHC and of the International Linear Collider. We discuss aspects of MM-AMSB models for Tevatron, LHC and ILC searches, muon g-2 and b->s \gamma branching fraction. We also calculate direct and indirect dark matter detection rates, and show that almost all WMAP-allowed models should be accessible to a ton-scale noble gas detector. Finally, we comment on the potential of colliders to measure the mirage unification scale and modular weights in the difficult case where mu_mir>>M_GUT.Comment: 34 pages plus 42 EPS figures; version with high resolution figures is at http://www.hep.fsu.edu/~bae

    Mixed Higgsino Dark Matter from a Reduced SU(3) Gaugino Mass: Consequences for Dark Matter and Collider Searches

    Get PDF
    In gravity-mediated SUSY breaking models with non-universal gaugino masses, lowering the SU(3) gaugino mass |M_3| leads to a reduction in the squark and gluino masses. Lower third generation squark masses, in turn, diminish the effect of a large top quark Yukawa coupling in the running of the higgs mass parameter m_{H_u}^2, leading to a reduction in the magnitude of the superpotential mu parameter (relative to M_1 and M_2). A low | mu | parameter gives rise to mixed higgsino dark matter (MHDM), which can efficiently annihilate in the early universe to give a dark matter relic density in accord with WMAP measurements. We explore the phenomenology of the low |M_3| scenario, and find for the case of MHDM increased rates for direct and indirect detection of neutralino dark matter relative to the mSUGRA model. The sparticle mass spectrum is characterized by relatively light gluinos, frequently with m(gl)<<m(sq). If scalar masses are large, then gluinos can be very light, with gl->Z_i+g loop decays dominating the gluino branching fraction. Top squarks can be much lighter than sbottom and first/second generation squarks. The presence of low mass higgsino-like charginos and neutralinos is expected at the CERN LHC. The small m(Z2)-m(Z1) mass gap should give rise to a visible opposite-sign/same flavor dilepton mass edge. At a TeV scale linear e^+e^- collider, the region of MHDM will mean that the entire spectrum of charginos and neutralinos are amongst the lightest sparticles, and are most likely to be produced at observable rates, allowing for a complete reconstruction of the gaugino-higgsino sector.Comment: 35 pages, including 26 EPS figure

    Dark Matter And Bsμ+μB_s \to \mu^+ \mu^- With Minimal SO10SO_{10} Soft SUSY Breaking II

    Full text link
    We update and extend to larger masses our previous analysis of the MSSM with minimal SO10SO_{10} [MSO10_{10}SM] soft SUSY breaking boundary conditions. We find a well--defined, narrow region of parameter space which provides the observed relic density of dark matter, in a domain selected to fit precision electroweak data, including top, bottom and tau masses. The model is highly constrained which allows us to make several predictions. We find the light Higgs mass mh121±3m_h \leq 121 \pm 3 GeV and also upper bounds on the mass of the gluino \mgluino\lsim3.1 TeV and lightest neutralino \mchi\lsim450 GeV. As the CP odd Higgs mass mAm_A increases, the region of parameter space consistent with WMAP data is forced to larger values of M1/2M_{1/2} and smaller values of mhm_h. Hence, we find an upper bound m_A \lsim 1.3 TeV. This in turn leads to lower bounds on BR(Bsμ+μ)>108{\rm BR}(B_s\to \mu^+ \mu^-) > 10^{-8} (assuming minimal flavor violation) and on the dark matter spin independent detection cross section \sigsip > 10^{-9} pb. Finally, we extend our previous analysis to include WIMP signals in indirect detection and find prospects for WIMP detection generally much less promising than in direct WIMP searches.Comment: 24 page

    High-energy Neutrino Astronomy: The Cosmic Ray Connection

    Full text link
    This is a review of neutrino astronomy anchored to the observational fact that Nature accelerates protons and photons to energies in excess of 102010^{20} and 101310^{13} eV, respectively. Although the discovery of cosmic rays dates back close to a century, we do not know how and where they are accelerated. Basic elementary-particle physics dictates a universal upper limit on their energy of 5×10195\times10^{19} eV, the so-called Greisen-Kuzmin-Zatsepin cutoff; however, particles in excess of this energy have been observed by all experiments, adding one more puzzle to the cosmic ray mystery. Mystery is fertile ground for progress: we will review the facts as well as the speculations about the sources including gamma ray bursts, blazars and top-down scenarios. The important conclusion is that, independently of the specific blueprint of the source, it takes a kilometer-scale neutrino observatory to detect the neutrino beam associated with the highest energy cosmic rays and gamma rays. We also briefly review the ongoing efforts to commission such instrumentation.Comment: 83 pages, 18 figures, submitted to Reports on Progress in Physic

    Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.

    Get PDF
    Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction
    corecore