8,411 research outputs found
Global Management Effectiveness Study: Integrated Social and Ecological Report for Non-node and Node Sites
The purpose of this study is to provide a critical assessment of the implementation, impact, and performance of Marine Managed Area (MMA) projects to serve as a basis for improved planning and implementation of new MMA projects worldwide. The specific objectives of the study are (1) to determine the socioeconomic, governance and ecological effects of MMAs; (2) to determine the critical factors influencing MMA effects, as well as the impact of the timing of those factors on the effects of the MMA; and (3) to provide tools for predicting MMA effects based on ecological, socioeconomic and governance variable
Adjuvant formulation for veterinary vaccines: Montanide™ Gel safety profile
AbstractSelecting the adjuvant is one of the key for the success of the vaccine in the field. Selecting a flexible adjuvant that will fit with several vaccines dedicated to one or more animal species is a source of economical efficiency. Frequently the safety or efficacy obtained with one model is different from another: there are few adjuvants fitting with the expectation of more than one animal species. Montanide™ Gel an innovative polymeric adjuvant have been tested in several animals. Our studies demonstrated the ability to use this adjuvant in dogs, cattle and pig vaccines. Three trials were performed to validate Montanide™ Gel ability to be used in cattle, pigs and dogs. Respectively, vaccines were formulated with ovalbumin in cattle, Pasteurella Multocida anatoxin and Bordetella bronchiseptica cell walls for pig and finally with parvovirus associated to two leptospira valence for dog model. All antigenic media used in the three trials were inactivated. In all trial, safety was followed through behaviour and temperature measurement as well as histology studies.Montanide™ Gel adjuvant can be used associated with a wide range of antigenic media. Nevertheless, the uses of such adjuvant need validation in avian and fish vaccines
Inverse problem and Bertrand's theorem
The Bertrand's theorem can be formulated as the solution of an inverse
problem for a classical unidimensional motion. We show that the solutions of
these problems, if restricted to a given class, can be obtained by solving a
numerical equation. This permit a particulary compact and elegant proof of
Bertrand's theorem.Comment: 11 pages, 3 figure
On the equivalence between hierarchical segmentations and ultrametric watersheds
We study hierarchical segmentation in the framework of edge-weighted graphs.
We define ultrametric watersheds as topological watersheds null on the minima.
We prove that there exists a bijection between the set of ultrametric
watersheds and the set of hierarchical segmentations. We end this paper by
showing how to use the proposed framework in practice in the example of
constrained connectivity; in particular it allows to compute such a hierarchy
following a classical watershed-based morphological scheme, which provides an
efficient algorithm to compute the whole hierarchy.Comment: 19 pages, double-colum
General framework of the non-perturbative renormalization group for non-equilibrium steady states
This paper is devoted to presenting in detail the non-perturbative
renormalization group (NPRG) formalism to investigate out-of-equilibrium
systems and critical dynamics in statistical physics. The general NPRG
framework for studying non-equilibrium steady states in stochastic models is
expounded and fundamental technicalities are stressed, mainly regarding the
role of causality and of Ito's discretization. We analyze the consequences of
Ito's prescription in the NPRG framework and eventually provide an adequate
regularization to encode them automatically. Besides, we show how to build a
supersymmetric NPRG formalism with emphasis on time-reversal symmetric
problems, whose supersymmetric structure allows for a particularly simple
implementation of NPRG in which causality issues are transparent. We illustrate
the two approaches on the example of Model A within the derivative expansion
approximation at order two, and check that they yield identical results.Comment: 28 pages, 1 figure, minor corrections prior to publicatio
Harmonic Measure and Winding of Conformally Invariant Curves
The exact joint multifractal distribution for the scaling and winding of the
electrostatic potential lines near any conformally invariant scaling curve is
derived in two dimensions. Its spectrum f(alpha,lambda) gives the Hausdorff
dimension of the points where the potential scales with distance as while the curve logarithmically spirals with a rotation angle
phi=lambda ln r. It obeys the scaling law f(\alpha,\lambda)=(1+\lambda^2)
f(\bar \alpha)-b\lambda^2 with \bar \alpha=\alpha/(1+\lambda^2) and
b=(25-c)/{12}$, and where f(\alpha)\equiv f(\alpha,0) is the pure harmonic
measure spectrum, and c the conformal central charge. The results apply to O(N)
and Potts models, as well as to {\rm SLE}_{\kappa}.Comment: 3 figure
Test engineering education in Europe: the EuNICE-Test project
The paper deals with a European experience of education in industrial test of ICs and SoCs using remote testing facilities. The project addresses the problem of the shortage in microelectronics engineers aware with the new challenge of testing mixed-signal SoCs far multimedia/telecom market. It aims at providing test training facilities at a European scale in both initial and continuing education contexts. This is done by allowing the academic and industrial partners of the consortium to train engineers using the common test resources center (CRTC) hosted by LIRMM (Laboratoire d'Informatique, de Robotique et de Microelectronique de Montpellier, France). CRTC test tools include up-to-date/high-tech testers that are fully representative of real industrial testers as used on production testfloors. At the end of the project, it is aimed at reaching a cruising speed of about 16 trainees per year per center. Each trainee will have attend at least one one-week training using the remote test facilities of CRTC
Probing thermalization and dynamics of high-energy quasiparticles in a superconducting nanowire by scanning critical current microscopy
Besides its fundamental interest, understanding the dynamics of pair breaking
in superconducting nanostructures is a central issue to optimize the
performances of superconducting devices such as qubits or photon detectors.
However, despite substantial research efforts, these dynamics are still not
well understood as this requires experiments in which quasiparticles are
injected in a controlled fashion. Until now, such experiments have employed
solid-state tunnel junctions with a fixed tunnel barrier. Here we use instead a
cryogenic scanning tunnelling microscope to tune independently the energy and
the rate of quasiparticle injection through, respectively, the bias voltage and
the tunnelling current. For high energy quasiparticles, we observe the
reduction of the critical current of a nanowire and show it is mainly
controlled by the injected power and, marginally, by the injection rate. Our
results prove a thermal mechanism for the reduction of the critical current and
unveil the rapid dynamics of the generated hot spot.Comment: 25 pages, 14 figure
Phonons in the multiferroic langasite BaNbFeSiO : evidences for symmetry breaking
The chiral langasite BaNbFeSiO is a multiferroic
compound. While its magnetic order below T=27 K is now well characterised,
its polar order is still controversial. We thus looked at the phonon spectrum
and its temperature dependence to unravel possible crystal symmetry breaking.
We combined optical measurements (both infrared and Raman spectroscopy) with ab
initio calculations and show that signatures of a polar state are clearly
present in the phonon spectrum even at room temperature. An additional symmetry
lowering occurs below 120~K as seen from emergence of softer phonon modes in
the THz range. These results confirm the multiferroic nature of this langasite
and open new routes to understand the origin of the polar state
Bi-layer Kinetic Inductance Detectors for space observations between 80-120 GHz
We have developed Lumped Element Kinetic Inductance Detectors (LEKID)
sensitive in the frequency band from 80 to 120~GHz. In this work, we take
advantage of the so-called proximity effect to reduce the superconducting gap
of Aluminium, otherwise strongly suppressing the LEKID response for frequencies
smaller than 100~GHz. We have designed, produced and optically tested various
fully multiplexed arrays based on multi-layers combinations of Aluminium (Al)
and Titanium (Ti). Their sensitivities have been measured using a dedicated
closed-circle 100 mK dilution cryostat and a sky simulator allowing to
reproduce realistic observation conditions. The spectral response has been
characterised with a Martin-Puplett interferometer up to THz frequencies, and
with a resolution of 3~GHz. We demonstrate that Ti-Al LEKID can reach an
optical sensitivity of about ~ (best pixel), or
~ when averaged over the whole array. The optical
background was set to roughly 0.4~pW per pixel, typical for future space
observatories in this particular band. The performance is close to a
sensitivity of twice the CMB photon noise limit at 100~GHz which drove the
design of the Planck HFI instrument. This figure remains the baseline for the
next generation of millimetre-wave space satellites.Comment: 7 pages, 9 figures, submitted to A&
- …