741 research outputs found

    Anisotropy of Magnetoresistance Hysteresis around the ν=2/3\nu=2/3 Quantum Hall State in Tilted Magnetic Field

    Full text link
    We present an anisotropy of the hysteretic transport around the spin transition point at Landau level filling factor ν=2/3\nu=2/3 in tilted magnetic field. When the direction of the in-plane component of the magnetic field BB_{\parallel} is normal to the probe current II, a strong hysteretic transport due to the current-induced nuclear spin polarization occurs. When BB_{\parallel} is parallel to II, on the other hand, the hysteresis almost disappears. We also demonstrate that the nuclear spin-lattice relaxation rate T11T_{1}^{-1} at the transition point increases with decreasing angle between the directions of BB_{\parallel} and II. These results suggest that the morphology of electron spin domains around ν=2/3\nu =2/3 is affected by the current direction.Comment: 4 pages, 4 figure

    Magnetic control of particle-injection in plasma based accelerators

    Get PDF
    The use of an external transverse magnetic field to trigger and to control electron self-injection in laser- and particle-beam driven wakefield accelerators is examined analytically and through full-scale particle-in-cell simulations. A magnetic field can relax the injection threshold and can be used to control main output beam features such as charge, energy, and transverse dynamics in the ion channel associated with the plasma blowout. It is shown that this mechanism could be studied using state-of-the-art magnetic fields in next generation plasma accelerator experiments.Comment: 10 pages, 3 figure

    The Study of Goldstone Modes in ν\nu=2 Bilayer Quantum Hall Systems

    Full text link
    At the filling factor ν\nu=2, the bilayer quantum Hall system has three phases, the spin-ferromagnet phase, the spin singlet phase and the canted antiferromagnet (CAF) phase, depending on the relative strength between the Zeeman energy and interlayer tunneling energy. We present a systematic method to derive the effective Hamiltonian for the Goldstone modes in these three phases. We then investigate the dispersion relations and the coherence lengths of the Goldstone modes. To explore a possible emergence of the interlayer phase coherence, we analyze the dispersion relations in the zero tunneling energy limit. We find one gapless mode with the linear dispersion relation in the CAF phase.Comment: 13 pages, no figures. One reference is added. Typos correcte

    Collapse of ρxx\rho_{xx} ringlike structures in 2DEGs under tilted magnetic fields

    Full text link
    In the quantum Hall regime, the longitudinal resistivity ρxx\rho_{xx} plotted as a density--magnetic-field (n2DBn_{2D}-B) diagram displays ringlike structures due to the crossings of two sets of spin split Landau levels from different subbands [e.g., Zhang \textit{et al.}, Phys. Rev. Lett. \textbf{95}, 216801 (2005)]. For tilted magnetic fields, some of these ringlike structures "shrink" as the tilt angle is increased and fully collapse at θc6\theta_c \approx 6^\circ. Here we theoretically investigate the topology of these structures via a non-interacting model for the 2DEG. We account for the inter Landau-level coupling induced by the tilted magnetic field via perturbation theory. This coupling results in anti-crossings of Landau levels with parallel spins. With the new energy spectrum, we calculate the corresponding n2DBn_{2D}-B diagram of the density of states (DOS) near the Fermi level. We argue that the DOS displays the same topology as ρxx\rho_{xx} in the n2DBn_{2D}-B diagram. For the ring with filling factor ν=4\nu=4, we find that the anti-crossings make it shrink for increasing tilt angles and collapse at a large enough angle. Using effective parameters to fit the θ=0\theta = 0^\circ data, we find a collapsing angle θc3.6\theta_c \approx 3.6^\circ. Despite this factor-of-two discrepancy with the experimental data, our model captures the essential mechanism underlying the ring collapse.Comment: 3 pages, 2 figures; Proceedings of the PASPS V Conference Held in August 2008 in Foz do Igua\c{c}u, Brazi

    Boundary-mediated electron-electron interactions in quantum point contacts

    Full text link
    An unusual increase of the conductance with temperature is observed in clean quantum point contacts for conductances larger than 2e^2/h. At the same time a positive magnetoresistance arises at high temperatures. A model accounting for electron-electron interactions mediated by bound- aries (scattering on Friedel oscillations) qualitatively describes the observation. It is supported by numerical simulation at zero magnetic field.Comment: To appear in Phys. Rev. Lett Updated version of Fig.

    Stability of the Excitonic Phase in Bilayer Quantum Hall Systems at Total Filling One -- Effects of Finite Well Width and Pseudopotentials --

    Full text link
    The ground state of a bilayer quantum Hall system at νT=1\nu_{\rm T}=1 with model pseudopotential is investigated by the DMRG method. Firstly, pseudopotential parameters appropriate for the system with finite layer thickness are derived, and it is found that the finite thickness makes the excitonic phase more stable. Secondly, a model, where only a few pseudopotentials with small relative angular momentum have finite values, is studied, and it is clarified how the excitonic phase is destroyed as intra-layer pseudopotential becomes larger. The importance of the intra-layer repulsive interaction at distance twice of the magnetic length for the destruction of the excitonic phase is found.Comment: 7 pages, 7 figure

    Triplet-Singlet Spin Relaxation via Nuclei in a Double Quantum Dot

    Full text link
    The spin of a confined electron, when oriented originally in some direction, will lose memory of that orientation after some time. Physical mechanisms leading to this relaxation of spin memory typically involve either coupling of the electron spin to its orbital motion or to nuclear spins. Relaxation of confined electron spin has been previously measured only for Zeeman or exchange split spin states, where spin-orbit effects dominate relaxation, while spin flips due to nuclei have been observed in optical spectroscopy studies. Using an isolated GaAs double quantum dot defined by electrostatic gates and direct time domain measurements, we investigate in detail spin relaxation for arbitrary splitting of spin states. Results demonstrate that electron spin flips are dominated by nuclear interactions and are slowed by several orders of magnitude when a magnetic field of a few millitesla is applied. These results have significant implications for spin-based information processing

    A continuous-time hidden Markov model for cancer surveillance using serum biomarkers with application to hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer deaths worldwide, and its early detection is a critical determinant of whether curative treatment is achievable. Early stage HCC is typically asymptomatic. Thus, screening programmes are used for cancer detection in patients at risk of tumour development. Radiological screening methods are limited by imperfect data, cost and associated risks, and additionally are unable to detect lesions until they have grown to a certain size. Therefore, some screening programmes use additional blood/serum biomarkers to help identify individuals in whom to target diagnostic cancer investigations. The GALAD score, combining the levels of several blood biomarkers, age and sex, has been developed to identify patients with early HCC. Here we propose a Bayesian hierarchical model for an individual’s longitudinal GALAD scores whilst in HCC surveillance to identify potentially significant changes in the trend of the GALAD score, indicating the development of HCC, aiming to improve early detection compared to standard methods. An absorbent two-state continuous-time hidden Markov model is developed for the individual level longitudinal data where the states correspond to the presence/absence of HCC. The model is additionally informed by the information on the diagnosis by standard clinical practice, taking into account that HCC can be present before the actual diagnosis so that there may be false negatives within the diagnosis data. We fit the model to a Japanese cohort of patients undergoing HCC surveillance and show that the detection capability of this proposal is greater than using a fixed cut-point
    corecore