928 research outputs found
Anisotropy of Magnetoresistance Hysteresis around the Quantum Hall State in Tilted Magnetic Field
We present an anisotropy of the hysteretic transport around the spin
transition point at Landau level filling factor in tilted magnetic
field. When the direction of the in-plane component of the magnetic field
is normal to the probe current , a strong hysteretic
transport due to the current-induced nuclear spin polarization occurs. When
is parallel to , on the other hand, the hysteresis almost
disappears. We also demonstrate that the nuclear spin-lattice relaxation rate
at the transition point increases with decreasing angle between
the directions of and . These results suggest that the
morphology of electron spin domains around is affected by the
current direction.Comment: 4 pages, 4 figure
Magnetic control of particle-injection in plasma based accelerators
The use of an external transverse magnetic field to trigger and to control
electron self-injection in laser- and particle-beam driven wakefield
accelerators is examined analytically and through full-scale particle-in-cell
simulations. A magnetic field can relax the injection threshold and can be used
to control main output beam features such as charge, energy, and transverse
dynamics in the ion channel associated with the plasma blowout. It is shown
that this mechanism could be studied using state-of-the-art magnetic fields in
next generation plasma accelerator experiments.Comment: 10 pages, 3 figure
The Study of Goldstone Modes in =2 Bilayer Quantum Hall Systems
At the filling factor =2, the bilayer quantum Hall system has three
phases, the spin-ferromagnet phase, the spin singlet phase and the canted
antiferromagnet (CAF) phase, depending on the relative strength between the
Zeeman energy and interlayer tunneling energy. We present a systematic method
to derive the effective Hamiltonian for the Goldstone modes in these three
phases. We then investigate the dispersion relations and the coherence lengths
of the Goldstone modes. To explore a possible emergence of the interlayer phase
coherence, we analyze the dispersion relations in the zero tunneling energy
limit. We find one gapless mode with the linear dispersion relation in the CAF
phase.Comment: 13 pages, no figures. One reference is added. Typos correcte
Collapse of ringlike structures in 2DEGs under tilted magnetic fields
In the quantum Hall regime, the longitudinal resistivity plotted
as a density--magnetic-field () diagram displays ringlike structures
due to the crossings of two sets of spin split Landau levels from different
subbands [e.g., Zhang \textit{et al.}, Phys. Rev. Lett. \textbf{95}, 216801
(2005)]. For tilted magnetic fields, some of these ringlike structures "shrink"
as the tilt angle is increased and fully collapse at . Here we theoretically investigate the topology of these structures
via a non-interacting model for the 2DEG. We account for the inter Landau-level
coupling induced by the tilted magnetic field via perturbation theory. This
coupling results in anti-crossings of Landau levels with parallel spins. With
the new energy spectrum, we calculate the corresponding diagram of
the density of states (DOS) near the Fermi level. We argue that the DOS
displays the same topology as in the diagram. For the
ring with filling factor , we find that the anti-crossings make it
shrink for increasing tilt angles and collapse at a large enough angle. Using
effective parameters to fit the data, we find a collapsing
angle . Despite this factor-of-two discrepancy with
the experimental data, our model captures the essential mechanism underlying
the ring collapse.Comment: 3 pages, 2 figures; Proceedings of the PASPS V Conference Held in
August 2008 in Foz do Igua\c{c}u, Brazi
Boundary-mediated electron-electron interactions in quantum point contacts
An unusual increase of the conductance with temperature is observed in clean
quantum point contacts for conductances larger than 2e^2/h. At the same time a
positive magnetoresistance arises at high temperatures. A model accounting for
electron-electron interactions mediated by bound- aries (scattering on Friedel
oscillations) qualitatively describes the observation. It is supported by
numerical simulation at zero magnetic field.Comment: To appear in Phys. Rev. Lett Updated version of Fig.
Treatment of multiple liver metastasis from gastric carcinoma
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Stability of the Excitonic Phase in Bilayer Quantum Hall Systems at Total Filling One -- Effects of Finite Well Width and Pseudopotentials --
The ground state of a bilayer quantum Hall system at with
model pseudopotential is investigated by the DMRG method. Firstly,
pseudopotential parameters appropriate for the system with finite layer
thickness are derived, and it is found that the finite thickness makes the
excitonic phase more stable. Secondly, a model, where only a few
pseudopotentials with small relative angular momentum have finite values, is
studied, and it is clarified how the excitonic phase is destroyed as
intra-layer pseudopotential becomes larger. The importance of the intra-layer
repulsive interaction at distance twice of the magnetic length for the
destruction of the excitonic phase is found.Comment: 7 pages, 7 figure
- …