13 research outputs found

    Sequence Similarities Of Protein Kinase Substrates And Inhibitors With Immunoglobulins And Model Immunoglobulin Homologue: Cell Adhesion Molecule From The Living Fossil Sponge Geodia Cydonium. Mapping Of Coherent Database Similarities And Implications For Evolution Of Cdr1 And Hypermutation

    No full text
    Sequences of immunoglobulin (Ig) domains of adhesive molecule GSAMS from the living fossil sponge Geodia cydonium were compared with the important motif of peptide protein kinase substrates and inhibitors (PKSI), detail PKSI sequences, and a common template sequence, derived from structures determined previously. We found the site-restricted sequence similarities to these peptide sequences predominantly in the GSAM Ig1 domain of GSAMS in the domain region related to corresponding Ig similarities detected earlier. Additional sequence block-related analysis revealed the presence of CDR1-like segments within PKSI-related regions and resulted in the detection of increased numbers of hypermutation motifs just in the CDR1-like segment of GSAM Ig1 (GSAM(cdr1.1)). In the following database searches with PKSI-related regions and GSAM(cdr1.1) we looked for: (i) peptide similarities present in the context of Ig domains or related structures in a large range of species from Archaea to Vertebrata, and (ii) some special nucleotide similarities. © 2004 Institute of Microbiology, Academy of Sciences of the Czech Republic.49321924

    Ancient Phylogenetic Beginnings Of Immunoglobulin Hypermutation

    No full text
    Many structures and molecules closely related to those involved in the specific process of immunoglobulin (Ig) hypermutation existed before the appearance of primordial Ig genes. Consequently, these structures can be found even in animals and organisms distinct from vertebrates; likewise, homologues of hypermutation enzymes are present in a broad range of species, from bacteria to mammals. Our analysis, based predominantly on primary structure, demonstrates the existence of molecules similar to Ig domains, variable Ig domains (IGv), and antigen receptors (AR) in unicellular organisms, nonvertebrate metazoans, and nonvertebrate Coelomata, respectively. In addition, we deal here with some important structural properties of CDR1-like segments of the selected sponge adhesion molecule GCSAMS exhibiting chimerical Ig domain similarities, and demonstrate the occurrence of conserved regions corresponding to Ohno's modern intact primordial building block in the C-terminal part of IGv-related segments of nonvertebrate origin. The results of our analysis are also discussed with respect to the possible phylogeny of molecules preceding the hypothetical common antigen receptor ancestor. © 2006 Springer Science+Business Media, Inc.635691706Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Res, 25, pp. 3389-3402Azumi, K., De Santis, R., De Tomaso, A., Rigoutsos, I., Yoshizaki, F., Pinto, M.R., Marino, R., Nonaka, M., Genomic analysis of immunity in a Urochordate and the emergence of the vertebrate immune system: "Waiting for Godot." (2003) Immunogenetics, 55, pp. 570-581Banerjee, M., Mehr, R., Belelovsky, A., Spencer, J., Dunn-Walters, D.K., Age- and tissue-specific differences in human germinal center B cell selection revealed by analysis of IgVH gene hypermutation and lineage trees (2002) Eur J Immunol, 32, pp. 1947-1957Beale, R.C.L., Petersen-Mahrt, S.K., Watt, I.N., Harris, R.S., Rada, C., Neuberger, M.S., Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: Correlation with mutation spectra in vivo (2004) J Mol Biol, 337, pp. 585-596Bernstein, R.M., Schluter, S.F., Bernstein, H., Marchalonis, J.J., Primordial emergence of the recombination activating gene 1 (RAG1): Sequence of the complete shark gene indicates homology to microbial integrases (1996) Proc Natl Acad Sci USA, 93, pp. 9454-9459Bernstein, R.M., Schluter, S.F., Shen, S., Marchalonis, J.J., A new high molecular weight immunoglobulin class from the carcharhine shark: Implications for the properties of the primordial immunoglobulin (1996) Proc Natl Acad Sci USA, 93, pp. 3289-3293Bjedov, I., Lecointre, G., Tenaillon, O., Vaury, C., Radman, M., Taddei, F., Denamur, E., Matic, I., Polymorphism of genes encoding SOS polymerases in natural populations of Escherichia coli (2003) DNA Repair, 2, pp. 417-426Blumbach, B., Diehl-Seifert, B., Seack, J., Steffen, R., Muller, I.M., Muller, W.E.G., Cloning and expression of new receptors belonging to the immunoglobulin superfamily from the marine sponge Geodia cydonium (1999) Immunogenetics, 49, pp. 751-763Boursier, L., Su, W., Spencer, J., Analysis of strand biased 'G'.C hypermutation in human immunoglobulin V(lambda) gene segments suggests that both DNA strands are targets for deamination by activation-induced cytidine deaminase (2004) Mol Immunol, 40, pp. 1273-1278Bradshaw, P.S., Condie, A., Matutes, E., Catovsky, D., Yuille, M.R., Breakpoints in the ataxia telangiectasia gene arise at the RGYW somatic hypermutation motif (2002) Gene, 21, pp. 483-487Bray, N., Pachter, L., MAVID: Constrained ancestral alignment of multiple sequences (2004) Genome Res, 14, pp. 693-699Brotcorne-Lannoye, A., Maenhaut-Michel, G., Role of RecA protein in untargeted UV mutagenesis of bacteriophage lambda: Evidence for the requirement for the dinB gene (1986) Proc Natl Acad Sci USA, 83, pp. 3904-3908Cannon, J.P., Haire, R.N., Litman, G.W., Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate (2002) Nat Immunol, 3, pp. 1200-1207Cannon, J.P., Haire, R.N., Pancer, Z., Mueller, M.G., Skapura, D., Cooper, M.D., Litman, G.W., Variable domains and a VpreB-like molecule are present in jawless vertebrate (2005) Immunogenetics, 56, pp. 924-929Chiang, S.C., Ali, V., Huang, A.L., Chu, K.Y., Lee, S.T., Molecular, cellular and functional characterization of a novel ICAM-like molecule of the immunoglobulin superfamily from Leishmania mexicana amazonensis (2001) Mol Biochem Parasitol, 112, pp. 263-275Chiang, S.C., Chang, S.C., Lee, S.T., ICAM-L gene is conserved only in Leishmania species in the family of kinetoplastida (2002) Mol Biochem Parasitol, 124, pp. 47-50China, B., Jacquemin, E., Devrin, A.-C., Pirson, V., Mainil, J., Heterogeneity of the eae genes in attaching/effacing Escherichia coli from cattle: Comparison with human strains (1999) Res Microbiol, 150, pp. 323-332Deppenmeier, U., Johann, A., Hartsch, T., Merkl, R., Schmitz, R.A., Martinez-Arias, R., Henne, A., Gottschalk, G., The genome of Methanosarcina mazei: Evidence for lateral gene transfer between Bacteria and Archaea (2002) J Mol Microbiol Biotechnol, 4, pp. 453-461Dersch, P., Isberg, R.R., An immunoglobulin superfamily-like domain unique to the Yersinia pseudotuberculosis invasin protein is required for stimulation of bacterial uptake via integrin receptors (2000) Infect Immun, 68, pp. 2930-2938Diaz, M., Flajnik, M.F., Evolution of somatic hypermutation and gene conversion in adaptive immunity (1998) Immunol Rev, 162, pp. 13-24Diaz, M., Velez, J., Singh, M., Cerny, J., Flajnik, M.F., Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: The translesion synthesis model of somatic hypermutation (1999) Internat Immunol, 11, pp. 825-833Diaz, M., Watson, N.B., Turkington, G., Verkoczy, L.K., Klinman, N.R., McGregor, W.G., Decreased frequency and highly aberrant spectrum of ultraviolet-induced mutations in the hprt gene of mouse fibroblast expressing antisense RNA to DNA polymerase zeta (2003) Mol Cancer Res, 1, pp. 836-847Di Noia, J.M., Neuberger, M.S., Immunoglobulin gene conversion in chicken DT40 cells largely proceeds through an abasic site intermediate generated by excision of the uracil produced by AID-mediated deoxycytidine deamination (2004) Eur J Immunol, 34, pp. 504-508Dorner, T., Brezinschek, H.-P., Brezinschek, R.I., Foster, S.J., Domiati-Saad, R., Lipsky, P.E., Analysis of the frequency and pattern of somatic mutations within nonproductively rearranged human variable heavy chain genes (1997) J Immunol, 158, pp. 2779-2789Dorner, T., Foster, S.J., Farner, N.L., Lipsky, P.E., Somatic hypermutation of human immunoglobulin heavy chain genes: Targeting of RGYW motifs on both DNA strands (1998) Eur J Immunol, 28, pp. 3384-3396Dorner, T., Foster, S.J., Brezinschek, H.-P., Lipsky, P.E., Analysis of the targeting of the hypermutational machinery and the impact of subsequent selection on the distribution of nucleotide changes in human VHDJH rearrangements (1998) Immunol Rev, 162, pp. 161-171Du Pasquier, L., Zucchetti, I., De Santis, R., Immunoglobulin superfamily receptors in protochordates: Before RAG time (2004) Immunol Rev, 198, pp. 233-248Duquette, M.L., Pham, P., Goodman, M.F., Maizels, N., AID binds to transcription-induced structures in c-MYC, that map to regions associated with translocation and hypermutation (2005) Oncogene, 24, pp. 5791-5798Faili, A., Aoufouchi, S., Flatter, E., Gueranger, Q., Reynaud, C.-A., Weill, J.C., Induction of somatic hypermutation in immunoglobulin genes is depedent on DNA polymerase iota (2002) Nature, 419, pp. 944-947Faili, A., Aoufouchi, S., Weller, S., Vuillier, F., Stary, A., Sarasin, A., Reynaud, C.-A., Weill, J.C., DNA polymerase eta is involved in hypermutation occurring during immunoglobulin class switch recombination (2004) J Exp Med, 199, pp. 265-270Gordon, M.S., Kanegai, C.M., Doerr, J.R., Wall, R., Somatic hypermutation of the B cell receptor genes B29 (Igb, CD79b) and mb1(Iga, CD79a) (2003) Proc Natl Acad Sci USA, 100, pp. 4126-4131Halaby, D.M., Mornon, J.P.E., The immunoglobulin superfamily: An insight on its tissular, species, and functional diversity (1998) J Mol Evol, 46, pp. 389-400Hoek, R.M., Smit, A.B., Frings, H., Vink, J.M., De Jong-Brink, M., Geraerts, W.P.M., A new Ig-superfamily member, molluscan defence molecule (MDM) from Lymnaea stagnalis, is down-regulated during parasitosis (1996) Eur J Immunol, 26, pp. 939-944Huang, T.W., Tien, A.C., Huang, W.S., Lee, Y.C., Peng, C.L., Tseng, C.L., Kao, C.Y., Huang, C.Y., POINT: A database for the prediction of protein-protein interactions based on the orthologous interactome (2004) Bioinformatics, 20, pp. 3273-3276Ito, T., Chiba, T., Yoshida, M., Exploring the protein interactome using comprehensive two-hybrid projects (2001) Trends Biotechnol, 19, pp. S23-S27James, L.C., Roversi, P., Tawfik, D.S., Antibody multispecificity mediated by conformational diversity (2003) Science, 299, pp. 1362-1367Jing, H., Takagi, J., Liu, J.H., Lindgren, S., Zhang, R.G., Joachimiak, A., Wang, J.H., Springer, T.A., Archaeal surface layer proteins contain beta propeller, PKD, and beta helix domains and are related to metazoan cell surface proteins (2002) Structure, 10, pp. 1453-1464Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S., Foeller, C., Sequences of proteins of immunological interest (1991) NIH Publication No. 91-3242, , NIH, Bethesda, MDKim, W.K., Bolser, D.M., Park, J.H., Large scale co-evolution analysis of protein structural interlogues using the global protein structural interactome map (PSIMAP) (2004) Bioinformatics, 20, pp. 1138-1150Klasen, M., Spillman, F.J.X., Lorens, J.B., Wabl, M., Retroviral vectors to monitor somatic hypermutation (2005) J Immunol Methods, 300, pp. 47-62Kubrycht, J., Sigler, K., Animal membrane receptors and adhesive molecules (1997) Crit Rev Biotechnol, 17, pp. 123-147Kubrycht, J., Borecký, J., Sigler, K., Sequence similarities of protein kinase peptide substrates. Comparison of their primary structures with immunoglobulin repeats (2002) Folia Microbiol, 47, pp. 319-358Kubrycht, J., Borecký, J., Souček, P., Ježek, P., Sequence similarities of protein kinase substrates and inhibitors with immunoglobulins and model immunoglobulin homologue: Cell adhesion molecule from the living fossil sponge Geodia cydonium. Mapping of coherent database similarities and implications for evolution of CDR1 and hypermutation (2004) Folia Microbiol, 49, pp. 219-246Lee, S.S., Tranchina, D., Ohta, Y., Flajnik, M.F., Hsu, E., Hypermutation in shark immunoglobulin light chain genes results contiguous substitutions (2002) Immunity, 16, pp. 571-582Lepš, J., (1996) Biostatistics, , University of Southern Bohemia, Ceske Budejovice, Czech RepublicLindstrom-Dinnetz, I., Sun, S.C., Faye, I., Structure and expression of hemolin, an insect member of the immunoglobulin gene superfamily (1995) Eur J Biochem, 230, pp. 920-925Litman, G.W., Anderson, M.K., Rast, J.P., Evolution of antigen receptors (1999) Annu Rev Immunol, 17, pp. 109-147Lossos, I.S., Levy, R., Alizadeh, A.A., AID is expressed in germinal B-cell-like and activated B-cell-like diffuse large-cell lymphomas and is not correlated with intraclonal heterogeneity (2004) Leukemia, 18, pp. 1775-1779Malpeli, G., Barbi, S., Moore, P.S., Scardoni, M., Chilosi, M., Scarpa, A., Menestrina, F., Primary mediastinal B-cell lymphoma: Hypermutation of the Bcl6 gene targets motifs different from those in diffuse large B-cell and follicular lymphomas (2004) Haematologica, 89, pp. 1091-1099Marchalonis, J.J., Schluter, S.F., A stochastic model for the rapid emergence of specific vertebrate immunity incorporating horizontal transfer of systems enabling duplication and combinational diversification (1998) J Theor Biol, 193, pp. 429-444Marchalonis, J.J., Kaveri, S., Lacroix-Desmazes, S., Kazatchine, M.D., Natural recognition repertoire and the evolutionary emergence of the combinatorial immune system (2002) FASEB J, 16, pp. 842-848Marchler-Bauer, A., Panchenko, A.R., Shoemaker, B.A., Thiessen, P.A., Geer, L.Y., Bryant, S.H., CDD: A database of conserved domain alignments with links to domain three-dimensional structure (2002) Nucleic Acids Res, 30, pp. 281-283Morelli, C., Karayianni, E., Magnanini, C., Mungall, A.J., Thorland, E., Negrini, M., Smith, D.I., Barbanti-Brodano, G., Cloning and characterization of the common fragile site FRAF6F, harboring a replicative senescence gene and frequently deleted in human tumors (2002) Oncogene, 21, pp. 7266-7276Muller, W.E.G., Origin of Metazoa: Sponges as living fossils (1998) Naturwissenschften, 85, pp. 11-25Muller, W.E.G., Schroder, H.C., Skorokhod, A., Bunz, C., Muller, I.M., Grebenjuk, V.A., Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa) (2001) Gene, 276, pp. 161-173Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Schinkai, Y., Honjo, T., Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme (2000) Cell, 102, pp. 553-563Notredame, C., (2003) Recent Progress in Multiple Sequence Alignments: A Survey, , http//:www.isrec.isb-sib.ch/~cschmid/DEA/Module5/lectures/4.2. msa_algorithms.pdf, Available atOchman, H., Lawrence, J.G., Groisman, E.A., Lateral gene transfer and nature of bacterial innovation (2000) Nature, 405, pp. 299-304Ohno, S., Matsunaga, T., Wallace, R.B., Identification of 48-base-long primordial building block sequence of mouse immunoglobulin variable region genes (1982) Proc Natl Acad Sci USA, 79, pp. 1999-2002Okazaki, I.-M., Hiai, H., Kakazu, N., Yamada, S., Muramatsu, M., Kinoshita, K., Honjo, T., Constitutive expression of AID leads to tumorigenesis (2003) J Exp Med, 197, pp. 1173-1181Oprea, M., Kepler, T.B., Genetic plasticity of V genes under somatic hypermutation: Statistical analyses using a new resampling-based methodology (1999) Genome Res, 9, pp. 1294-1304Oprea, M., Cowell, L.G., Kepler, T.B., The targeting of somatic hypermutation closely resembles that of meiotic mutation (2001) J Immunol, 166, pp. 892-899Pancer, Z., Mayer, W.S., Klein, J., Cooper, M.D., Prototypic T cell receptor and CD4-like coreceptor are expressed by lymphocytes in the agnathan sea lamprey (2004) Proc Natl Acad Sci USA, 101, pp. 13273-13278Park, D., Lee, S., Bolser, D.M., Schroeder, M., Lappe, M., Oh, D., Bhak, J., Comparative interactomics analysis of protein family interaction networks using PSIMAP (protein structural interactome map) (2005) Bioinformatics, 21, pp. 3234-3240Petersen-Mahrt, S.K., Harris, R.S., Neuberger, M.S., AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification (2002) Nature, 418, pp. 99-103Poltoratsky, V.P., Wilson, S.H., Kunkel, T.A., Pavlov, Y.I., Recombinogenic phenotype of human activation-induced cytosine deaminase (2004) J Immunol, 172, pp. 4308-4313Potter, M., Padlan, E., Rudikoff, S., Localized deletion-insertion mutations: A major factor in the evolution of immunoglobulin structural variability (1976) J Immunol, 117, pp. 626-629Rada, C., Yelamos, J., Dean, W., Milstein, C., The 5′ hypermutation boundary of kappa chains is independent of local and neighbouring sequences and related to the distance from the initiation of transcription (1997) Eur J Immunol, 27, pp. 3115-3120Ray, J.L., Nielsen, K.M., Experimental methods for assaying natural transformation and inferring horizontal gene transfer (2005) Methods Enzymol, 395, pp. 491-520Reuven, N.B., Arad, G., Maor-Shoshani, A., Livneh, Z., The mutagenesis protein UmuC is a DNA polymerase activated by UmuD, RecA, and SSB and is specialized for translesion replication (1999) J Biol Chem, 274, pp. 31763-31766Riazuddin, S., Khan, S.N., Ahmed, Z.M., Ghosh, M., Caution, K., Nazli, S., Kabra, M., Friedman, T.B., Mutations in TRIOBP, which encodes a putative cytoskeletal-organizing protein, are associated with nonsyndromic recessive deafness (2006) Am J Hum Genet, 78, pp. 137-143Rogozin, I.B., Diaz, M., Cutting Edge: DGYW/WRCH is a better predictor of mutability at G:C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine demainase-triggered process (2004) J Immunol, 172, pp. 3382-3384Rogozin, I.B., Kolchanov, N.A., Somatic hypermutagenesis in immunoglobulin genes II. Influence of neighbouring base sequences on mutagenesis (1992) Biochim Biophys Acta, 1171, pp. 11-18Rossenu, S., Dewitte, D., Vandekerckhove, J., Ampe, C., A phage display technique for a fast, sensitive and systematic investigation of protein-protein interactions (1997) J Protein Chem, 16, pp. 499-503Rumfelt, L.L., Lohr, R.L., Dooley, H., Flajnik, M.F., Diversity and repertoire of IgW and IgM VH families in the newborn nurse shark (2004) BMC Immunol, 5, p. 8Sato, A., Mayer, W.E., Klein, J., A molecule bearing an immunoglobulin-like V region of the CTX subfamily in amphioxus (2003) Immunogenetics, 55, pp. 423-427Schaffer, A.A., Aravind, L., Madden, T.L., Shavirin, S., Spouge, J.L., Wolf, Y.I., Koonin, E.V., Altschul, S.F., Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and the other refinements (2001) Nucleic Acids Res, 29, pp. 2994-3005Schatz, D.G., Antigen receptor genes and the evolution of a recombinase (2004) Semin Immunol, 16, pp. 245-256Schluter, S.F., Bernstein, R.M., Marchalonis, J.J., Molecular origins and evolution of immunoglobulin heavy-chain genes of jawed vertebrates (1997) Immunol Today, 18, pp. 543-549Schneider, T.D., Stephens, R.M., Sequence logos: A new way to display consensus sequences (1990) Nucleic Acids Res, 18, pp. 6097-6100Schutze, J., Skorokhod, A., Muller, I.M., Muller, W.E.G., Molecular evolution of the metazoan extracellular matrix: Cloning and expression of structural proteins from the demosponges Suberites domuncula and Geodia cydonium (2001) J Mol Evol, 53, pp. 402-415Shapiro, G.S., Ellison, M.C., Wysocki, L.J., Sequence-specific targeting of two bases on both DNA strands by the somatic hypermutation mechanism (2003) Mol Immunol, 40, pp. 287-295Shen, H.M., Peters, A., Baron, B., Zhu, X., Storb, U., Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes (1998) Science, 280, pp. 1750-1752Sheppard, D.C., Yeaman, M.R., Welch, W.H., Phan, Q.T., Fu, Y., Ibrahim, A.S., Filler, S.G., Edwards Jr., J.E., Functional and structural diversity in the Als protein family of Candida albicans (2004) J Biol Chem, 279, pp. 30480-30489Simhadri, S., Kramata, P., Zajc, B., Sayer, J.M., Jerina, D.M., Hinkle, D.C., Wei, C.S., Benzo[a]pyrene diol epoxide-deoxyguanosine adducts are accurately bypassed by yeast DNA polymerase zeta in vitro (2002) Mutat Res, 508, pp. 137-145Simossis, V.A., Kleinjung, J., Heringa, J., Homology-extended sequence alignment (2005) Nucleic Acids Res, 33, pp. 816-824Simpson, L.J., Sale, J.E., Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line (2003) EMBO J, 22, pp. 1654-1664Sitnikova, T., Su, C., Coevolution of immunoglobulin heavy- and light-chain variable-region gene families (1998) Mol Biol Evol, 15, pp. 617-625Smith, G.P., Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface (1985) Science, 228, pp. 1315-1317Suzuki, T., Shin-I, T., Kohara, Y., Kasahara, M., Transcriptome analysis of hagfish leukocytes: A framework for understanding the immune system of jawless fishes (2004) Dev Comp Immunol, 28, pp. 993-1003Teichmann, S.A., Chothia, C., Immunoglobulin superfamily proteins in Caenorhabditis elegans (2000) J Mol Biol, 296, pp. 1367-1383Tilson, M.D., Rzhetsky, A., A novel hypothesis regarding the evolutionary origins of the immunoglobulin fold (2000) Curr Med Res Opin, 16, pp. 88-93Van Den Berg, T.K., Yoder, J.A., Litman, G.W., On the origins of adaptive immunity: Innate immune receptors join the tale (2004) Trends Immunol, 25, pp. 11-16Vogel, C., Teichmann, S.A., Chothia, C., The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity (2003) Development, 130, pp. 6317-6328Washington, M.T., Johnson, R.E., Prakash, L., Prakash, S., The mechanism of nucleotide incorporation by human DNA polymerase eta differs from that of the yeast enzyme (2003) Mol Cell Biol, 23, pp. 8316-8322Wedekind, J.E., Dance, G.S.C., Sowden, M.P., Smith, H.C., Messenger RNA editing in mammals: New members of the APOBEC family seeking roles in the family business (2003) Trends Genet, 19, pp. 207-216Wiens, M., Mangoni, A., D'Esposito, M., Fattorusso, E., Korchagina, N., Schroder, H.C., Grebenjuk, V.A., Muller, W.E.G., The molecular basis for the evolution of the metazoan bodyplan: Extracellular matrix-mediated morphogenesis in marine demosponges (2003) J Mol Evol, 57, pp. S60-S75Williams, A.F., Barclay, A.N., The immunoglobulin superfamily-domains for cell surface recognition (1988) Annu Rev Immunol, 6, pp. 381-405Wojciechowicz, D., Lu, C.F., Kurjan, J., Lipke, P.N., Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisae cell adhesion protein alpha-agglutinin, a member of the immunoglobulin superfamily (1993) Mol Cell Biol, 13, pp. 2554-2563Wright, B.E., Schmidt, K.H., Minnick, M.F., Mechanism by which transcription can regulate somatic hypermutation (2004) Genes Immun, 5, pp. 176-182Yang, C., Carlow, D., Wolfenden, R., Short, S.A., Cloning and nucleotide sequence of the Escherichia coli cytidine deaminase (ccd) gene (1992) Biochemistry, 31, pp. 4168-4174Yang, W., Portraits
    corecore