916 research outputs found

    Isoprene photooxidation : new insights into the production of acids and organic nitrates

    Get PDF
    We describe a nearly explicit chemical mechanism for isoprene photooxidation guided by chamber studies that include time-resolved observation of an extensive suite of volatile compounds. We provide new constraints on the chemistry of the poorly-understood isoprene δ-hydroxy channels, which account for more than one third of the total isoprene carbon flux and a larger fraction of the nitrate yields. We show that the cis branch dominates the chemistry of the δ-hydroxy channel with less than 5% of the carbon following the trans branch. The modelled yield of isoprene nitrates is 12±3% with a large difference between the δ and β branches. The oxidation of these nitrates releases about 50% of the NOx. Methacrolein nitrates (modelled yield ≃15±3% from methacrolein) and methylvinylketone nitrates (modelled yield ≃11±3% yield from methylvinylketone) are also observed. Propanone nitrate, produced with a yield of 1% from isoprene, appears to be the longest-lived nitrate formed in the total oxidation of isoprene. We find a large molar yield of formic acid and suggest a novel mechanism leading to its formation from the organic nitrates. Finally, the most important features of this mechanism are summarized in a condensed scheme appropriate for use in global chemical transport models

    Superconducting, Insulating, and Anomalous Metallic Regimes in a Gated Two-Dimensional Semiconductor-Superconductor Array

    Full text link
    The superconductor-insulator transition in two dimensions has been widely investigated as a paradigmatic quantum phase transition. The topic remains controversial, however, because many experiments exhibit a metallic regime with saturating low-temperature resistance, at odds with conventional theory. Here, we explore this transition in a novel, highly controllable system, a semiconductor heterostructure with epitaxial Al, patterned to form a regular array of superconducting islands connected by a gateable quantum well. Spanning nine orders of magnitude in resistance, the system exhibits regimes of superconducting, metallic, and insulating behavior, along with signatures of flux commensurability and vortex penetration. An in-plane magnetic field eliminates the metallic regime, restoring the direct superconductor-insulator transition, and improves scaling, while strongly altering the scaling exponent

    Evolution of Galaxy morphologies in Clusters

    Get PDF
    We have studied the evolution of galaxian morphologies from ground-based, good-seeing images of 9 clusters at z=0.09-0.25. The comparison of our data with those relative to higher redshift clusters (Dressler et al. 1997) allowed us to trace for the first time the evolution of the morphological mix at a look-back time of 2-4 Gyr, finding a dependence of the observed evolutionary trends on the cluster properties.Comment: 4 pages with 2 figures in Latex-Kluwer style. To be published in the proceedings of the Granada Euroconference "The Evolution of Galaxies.I-Observational Clues

    Zero-Energy Modes from Coalescing Andreev States in a Two-Dimensional Semiconductor-Superconductor Hybrid Platform

    Full text link
    We investigate zero-bias conductance peaks that arise from coalescing subgap Andreev states, consistent with emerging Majorana zero modes, in hybrid semiconductor-superconductor wires defined in a two-dimensional InAs/Al heterostructure using top-down lithography and gating. The measurements indicate a hard superconducting gap, ballistic tunneling contact, and in-plane critical fields up to 33~T. Top-down lithography allows complex geometries, branched structures, and straightforward scaling to multicomponent devices compared to structures made from assembled nanowires.Comment: Includes Supplementary Materia

    Fast sensing of double-dot charge arrangement and spin state with an rf sensor quantum dot

    Full text link
    Single-shot measurement of the charge arrangement and spin state of a double quantum dot are reported, with measurement times down to ~ 100 ns. Sensing uses radio-frequency reflectometry of a proximal quantum dot in the Coulomb blockade regime. The sensor quantum dot is up to 30 times more sensitive than a comparable quantum point contact sensor, and yields three times greater signal to noise in rf single-shot measurements. Numerical modeling is qualitatively consistent with experiment and shows that the improved sensitivity of the sensor quantum dot results from reduced screening and lifetime broadening.Comment: related papers at http://marcuslab.harvard.ed

    The WINGS Survey: a progress report

    Full text link
    A two-band (B and V) wide-field imaging survey of a complete, all-sky X-ray selected sample of 78 clusters in the redshift range z=0.04-0.07 is presented. The aim of this survey is to provide the astronomical community with a complete set of homogeneous, CCD-based surface photometry and morphological data of nearby cluster galaxies located within 1.5 Mpc from the cluster center. The data collection has been completed in seven observing runs at the INT and ESO-2.2m telescopes. For each cluster, photometric data of about 2500 galaxies (down to V~23) and detailed morphological information of about 600 galaxies (down to V~21) are obtained by using specially designed automatic tools. As a natural follow up of the photometric survey, we also illustrate a long term spectroscopic program we are carrying out with the WHT-WYFFOS and AAT-2dF multifiber spectrographs. Star formation rates and histories, as well as metallicity estimates will be derived for about 350 galaxies per cluster from the line indices and equivalent widths measurements, allowing us to explore the link between the spectral properties and the morphological evolution in high- to low-density environments, and across a wide range in cluster X-ray luminosities and optical properties.Comment: 12 pages, 10 eps figures, Proceedings of the SAIt Conference 200

    Bright Source of Cold Ions for Surface-Electrode Traps

    Get PDF
    We produce large numbers of low-energy ions by photoionization of laser-cooled atoms inside a surface-electrode-based Paul trap. The isotope-selective trap loading rate of 4×1054\times10^{5} Yb+^{+} ions/s exceeds that attained by photoionization (electron impact ionization) of an atomic beam by four (six) orders of magnitude. Traps as shallow as 0.13 eV are easily loaded with this technique. The ions are confined in the same spatial region as the laser-cooled atoms, which will allow the experimental investigation of interactions between cold ions and cold atoms or Bose-Einstein condensates.Comment: Paper submitted to PRL for review on 2/1/0

    A tunable coupling scheme for implementing high-fidelity two-qubit gates

    Full text link
    The prospect of computational hardware with quantum advantage relies critically on the quality of quantum gate operations. Imperfect two-qubit gates is a major bottleneck for achieving scalable quantum information processors. Here, we propose a generalizable and extensible scheme for a two-qubit coupler switch that controls the qubit-qubit coupling by modulating the coupler frequency. Two-qubit gate operations can be implemented by operating the coupler in the dispersive regime, which is non-invasive to the qubit states. We investigate the performance of the scheme by simulating a universal two-qubit gate on a superconducting quantum circuit, and find that errors from known parasitic effects are strongly suppressed. The scheme is compatible with existing high-coherence hardware, thereby promising a higher gate fidelity with current technologies
    corecore