66 research outputs found

    Ribonucleotide Reductase Inhibitors: A New Look at an Old Target for Radiosensitization

    Get PDF
    Ribonucleotide reductase (RR), the rate limiting enzyme in the synthesis and repair of DNA, has been studied as a target for inhibition in the treatment of cancer for many years. While some researchers have focused on RR inhibitors as chemotherapeutic agents, particularly in hematologic malignancies, some of the most promising data has been generated in the field of radiosensitization. Early pre-clinical studies demonstrated that the addition of the first of these drugs, hydroxyurea, to ionizing radiation (IR) produced a synergistic effect in vitro, leading to a large number of clinical studies in the 1970–1980s. These studies, mainly in cervical cancer, initially produced a great deal of interest, leading to the incorporation of hydroxyurea in the treatment protocols of many institutions. However, over time, the conclusions from these studies have been called into question and hydroxyurea has been replaced in the standard of care of cervical cancer. Over the last 10 years, a number of well-done pre-clinical studies have greatly advanced our understanding of RR as a target. Those advances include the elucidation of the role of p53R2 and our understanding of the temporal relationship between the delivery of IR and the response of RR. At the same time, new inhibitors with increased potency and improved binding characteristics have been discovered, and pre-clinical and early clinical data look promising. Here we present a comprehensive review of the pre-clinical and clinical data in the field to date and provide some discussion of future areas of research

    Selective incorporation of iododeoxyuridine into DNA of hepatic metastases versus normal human liver

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109868/1/cptclpt1988166.pd

    Radiation Therapy in Addition to Gross Total Resection of Retroperitoneal Sarcoma Results in Prolonged Survival: Results from a Single Institutional Study

    Get PDF
    Purpose. Typical treatment of retroperitoneal sarcomas (RPSs) is surgery with or without radiation therapy for localized disease. With surgery alone, local failure rates are as high as 90%; this led to radiation therapy playing an important role in the treatment of RPSs. Methods. Thirty-one patients with retroperitoneal sarcoma treated with gross total resection and radiation therapy make up this retrospective analysis. Nineteen were treated preoperatively and 12 postoperatively (median dose, 59.4 Gy)—sixteen also received intraoperative radiation therapy (IORT) (median dose, 11 Gy). Patients were followed with stringent regimens, including frequent CT scans of the chest, abdomen, and pelvis. Results. With a median follow-up of 19 months (range 1–66 months), the 2-year overall survival (OS) rate is 70% (median, 52 months). The 2-year locoregional control (LRC) rate is 77% (median, 61.6 months). The 2-year distant disease free survival (DDFS) rate is 70% (median not reached). There were no differences in radiation-related acute and late toxicities among patients treated pre- versus postoperatively, whether with or without IORT. Conclusions. Compared to surgery alone, neoadjuvant or adjuvant radiation therapy offers patients with RPS an excellent chance for long-term LRC, DDS, and OS. The integration of modern treatment planning for external beam radiation therapy and IORT allows for higher doses to be delivered with acceptable toxicities

    Predictors for long-term survival free from whole brain radiation therapy in patients treated with radiosurgery for limited brain metastases

    Get PDF
    PURPOSE: To identify predictors for prolonged survival free from salvage whole brain radiation therapy (WBRT) in patients with brain metastases treated with stereotactic radiosurgery (SRS) as their initial radiotherapy approach. MATERIALS AND METHODS: Patients with brain metastases treated with SRS from 2001 to 2013 at our institution were identified. SRS without WBRT was typically offered to patients with 1-4 brain metastases, Karnofsky performance status \u3e /=70, and life expectancy \u3e /=3 months. Three hundred and eight patients met inclusion criteria for analysis. Medical records were reviewed for patient, disease, and treatment information. Two comparison groups were identified: those with \u3e /=1-year WBRT-free survival (N = 104), and those who died or required salvage WBRT within 3 months of SRS (N = 56). Differences between these groups were assessed by univariate and multivariate analyses. RESULTS: Median survival for all patients was 11 months. Among patients with \u3e /=1-year WBRT-free survival, median survival was 33 months (12-107 months) with only 21% requiring salvage WBRT. Factors significantly associated with prolonged WBRT-free survival on univariate analysis (p \u3c 0.05) included younger age, asymptomatic presentation, RTOG RPA class I, fewer brain metastases, surgical resection, breast primary, new or controlled primary, absence of extracranial metastatic disease, and oligometastatic disease burden ( \u3c /=5 metastatic lesions). After controlling for covariates, asymptomatic presentation, breast primary, single brain metastasis, absence of extracranial metastases, and oligometastatic disease burden remained independent predictors for favorable WBRT-free survival. CONCLUSION: A subset of patients with brain metastases can achieve long-term survival after upfront SRS without the need for salvage WBRT. Predictors identified in this study can help select patients that might benefit most from a treatment strategy of SRS alone

    A Multi-Institutional Phase II Trial of Preoperative Full-Dose Gemcitabine and Concurrent Radiation for Patients With Potentially Resectable Pancreatic Carcinoma

    Full text link
    We report the results of a multi-institutional phase II trial that used preoperative full-dose gemcitabine and radiotherapy for patients with potentially resectable pancreatic carcinoma.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41411/1/10434_2006_Article_9435.pd

    Real-world experience of nintedanib for progressive fibrosing interstitial lung disease in the UK

    Get PDF
    Background Nintedanib slows progression of lung function decline in patients with progressive fibrosing (PF) interstitial lung disease (ILD) and was recommended for this indication within the United Kingdom (UK) National Health Service in Scotland in June 2021 and in England, Wales and Northern Ireland in November 2021. To date, there has been no national evaluation of the use of nintedanib for PF-ILD in a real-world setting.Methods 26 UK centres were invited to take part in a national service evaluation between 17 November 2021 and 30 September 2022. Summary data regarding underlying diagnosis, pulmonary function tests, diagnostic criteria, radiological appearance, concurrent immunosuppressive therapy and drug tolerability were collected via electronic survey.Results 24 UK prescribing centres responded to the service evaluation invitation. Between 17 November 2021 and 30 September 2022, 1120 patients received a multidisciplinary team recommendation to commence nintedanib for PF-ILD. The most common underlying diagnoses were hypersensitivity pneumonitis (298 out of 1120, 26.6%), connective tissue disease associated ILD (197 out of 1120, 17.6%), rheumatoid arthritis associated ILD (180 out of 1120, 16.0%), idiopathic nonspecific interstitial pneumonia (125 out of 1120, 11.1%) and unclassifiable ILD (100 out of 1120, 8.9%). Of these, 54.4% (609 out of 1120) were receiving concomitant corticosteroids, 355 (31.7%) out of 1120 were receiving concomitant mycophenolate mofetil and 340 (30.3%) out of 1120 were receiving another immunosuppressive/modulatory therapy. Radiological progression of ILD combined with worsening respiratory symptoms was the most common reason for the diagnosis of PF-ILD.Conclusion We have demonstrated the use of nintedanib for the treatment of PF-ILD across a broad range of underlying conditions. Nintedanib is frequently co-prescribed alongside immunosuppressive and immunomodulatory therapy. The use of nintedanib for the treatment of PF-ILD has demonstrated acceptable tolerability in a real-world setting

    Essential Role of DNA Base Excision Repair on Survival in an Acidic Tumor Microenvironment

    No full text

    Differential cellular responses to prolonged LDR-IR in MLH1-proficient and MLH1-deficient colorectal cancer HCT116 cells

    No full text
    Purpose: MLH1 is a key DNA mismatch repair (MMR) protein involved in maintaining genomic stability by participating in the repair of endogenous and exogenous mispairs in the daughter strands during S phase. Exogenous mispairs can result following treatment with several classes of chemotherapeutic drugs, as well as with ionizing radiation. In this study, we investigated the role of the MLH1 protein in determining the cellular and molecular responses to prolonged low–dose rate ionizing radiation (LDR-IR), which is similar to the clinical use of cancer brachytherapy. Experimental Design: An isogenic pair of MMR+ (MLH1+) and MMR− (MLH1−) human colorectal cancer HCT116 cells was exposed to prolonged LDR-IR (1.3-17 cGy/h × 24-96 h). The clonogenic survival and gene mutation rates were examined. Cell cycle distribution was analyzed with flow cytometry. Changes in selected DNA damage repair proteins, DNA damage response proteins, and cell death marker proteins were examined with Western blotting. Results: MLH1+ HCT116 cells showed greater radiosensitivity with enhanced expression of apoptotic and autophagic markers, a reduced HPRT gene mutation rate, and more pronounced cell cycle alterations (increased late-S population and a G2/M arrest) following LDR-IR compared with MLH1− HCT116 cells. Importantly, a progressive increase in MLH1 protein levels was found in MLH1+ cells during prolonged LDR-IR, which was temporally correlated with a progressive decrease in Rad51 protein (involved in homologous recombination) levels. Conclusions: MLH1 status significantly affects cellular responses to prolonged LDR-IR. MLH1 may enhance cell radiosensitivity to prolonged LDR-IR through inhibition of homologous recombination (through inhibition of Rad51)
    corecore