849 research outputs found

    Quark Masses: An Environmental Impact Statement

    Full text link
    We investigate worlds that lie on a slice through the parameter space of the Standard Model over which quark masses vary. We allow as many as three quarks to participate in nuclei, while fixing the mass of the electron and the average mass of the lightest baryon flavor multiplet. We classify as "congenial" worlds that satisfy the environmental constraint that the quark masses allow for stable nuclei with charges one, six, and eight, making organic chemistry possible. Whether a congenial world actually produces observers depends on a multitude of historical contingencies, beginning with primordial nucleosynthesis, which we do not explore. Such constraints may be independently superimposed on our results. Environmental constraints such as the ones we study may be combined with information about the a priori distribution of quark masses over the landscape of possible universes to determine whether the measured values of the quark masses are determined environmentally, but our analysis is independent of such an anthropic approach. We estimate baryon masses as functions of quark masses and nuclear masses as functions of baryon masses. We check for the stability of nuclei against fission, strong particle emission, and weak nucleon emission. For two light quarks with charges 2/3 and -1/3, we find a band of congeniality roughly 29 MeV wide in their mass difference. We also find another, less robust region of congeniality with one light, charge -1/3 quark, and two heavier, approximately degenerate charge -1/3 and 2/3 quarks. No other assignment of light quark charges yields congenial worlds with two baryons participating in nuclei. We identify and discuss the region in quark-mass space where nuclei would be made from three or more baryon species.Comment: 40 pages, 16 figures (in color), 4 tables. See paper for a more detailed abstract. v4: Cleaning up minor typo

    Direct Evidence for Dominant Bond-directional Interactions in a Honeycomb Lattice Iridate Na2IrO3

    Get PDF
    Heisenberg interactions are ubiquitous in magnetic materials and have been prevailing in modeling and designing quantum magnets. Bond-directional interactions offer a novel alternative to Heisenberg exchange and provide the building blocks of the Kitaev model, which has a quantum spin liquid (QSL) as its exact ground state. Honeycomb iridates, A2IrO3 (A=Na,Li), offer potential realizations of the Kitaev model, and their reported magnetic behaviors may be interpreted within the Kitaev framework. However, the extent of their relevance to the Kitaev model remains unclear, as evidence for bond-directional interactions remains indirect or conjectural. Here, we present direct evidence for dominant bond-directional interactions in antiferromagnetic Na2IrO3 and show that they lead to strong magnetic frustration. Diffuse magnetic x-ray scattering reveals broken spin-rotational symmetry even above Neel temperature, with the three spin components exhibiting nano-scale correlations along distinct crystallographic directions. This spin-space and real-space entanglement directly manifests the bond-directional interactions, provides the missing link to Kitaev physics in honeycomb iridates, and establishes a new design strategy toward frustrated magnetism.Comment: Nature Physics, accepted (2015

    Z2_2 topology and superconductivity from symmetry lowering of a 3D Dirac Metal Au2_2Pb

    Full text link
    3D Dirac semi-metals (DSMs) are materials that have massless Dirac electrons and exhibit exotic physical properties It has been suggested that structurally distorting a DSM can create a Topological Insulator (TI), but this has not yet been experimentally verified. Furthermore, quasiparticle excitations known as Majorana Fermions have been theoretically proposed to exist in materials that exhibit superconductivity and topological surface states. Here we show that the cubic Laves phase Au2_2Pb has a bulk Dirac cone above 100 K that gaps out upon cooling at a structural phase transition to create a topologically non trivial phase that superconducts below 1.2 K. The nontrivial Z2_2 = -1 invariant in the low temperature phase indicates that Au2_2Pb in its superconducting state must have topological surface states. These characteristics make Au2_2Pb a unique platform for studying the transition between bulk Dirac electrons and topological surface states as well as studying the interaction of superconductivity with topological surface states

    Non-coplanar and counter-rotating incommensurate magnetic order stabilized by Kitaev interactions in γ\gamma-Li2IrO3

    Full text link
    Materials that realize Kitaev spin models with bond-dependent anisotropic interactions have long been searched for, as the resulting frustration effects are predicted to stabilize novel forms of magnetic order or quantum spin liquids. Here we explore the magnetism of γ\gamma-Li2_2IrO3_3, which has the topology of a 3D Kitaev lattice of inter-connected Ir honeycombs. Using resonant magnetic x-ray diffraction we find a complex, yet highly-symmetric incommensurate magnetic structure with non-coplanar and counter-rotating Ir moments. We propose a minimal Kitaev-Heisenberg Hamiltonian that naturally accounts for all key features of the observed magnetic structure. Our results provide strong evidence that γ\gamma-Li2_2IrO3_3 realizes a spin Hamiltonian with dominant Kitaev interactions.Comment: 10 pages, 7 figure

    Transport evidence for Fermi-arc mediated chirality transfer in the Dirac semimetal Cd3_3As2_2

    Full text link
    Dirac semi-metals show a linear electronic dispersion in three dimension described by two copies of the Weyl equation, a theoretical description of massless relativistic fermions. At the surface of a crystal, the breakdown of fermion chirality is expected to produce topological surface states without any counterparts in high-energy physics nor conventional condensed matter systems, the so-called "Fermi Arcs". Here we present Shubnikov-de Haas oscillations involving the Fermi Arc states in Focused Ion Beam prepared microstructures of Cd3_3As2_2. Their unusual magnetic field periodicity and dependence on sample thickness can be well explained by recent theoretical work predicting novel quantum paths weaving the Fermi Arcs together with chiral bulk states, forming "Weyl orbits". In contrast to conventional cyclotron orbits, these are governed by the chiral bulk dynamics rather than the common momentum transfer due to the Lorentz force. Our observations provide evidence for direct access to the topological properties of charge in a transport experiment, a first step towards their potential application.Comment: 25 pages, 11 figures, final published versio

    Simultaneous colorectal and hepatic procedures for colorectal cancer result in increased morbidity but equivalent mortality compared with colorectal or hepatic procedures alone: outcomes from the National Surgical Quality Improvement Program

    Get PDF
    AbstractBackgroundSimultaneous colorectal and hepatic surgery for colorectal cancer (CRC) is increasing as surgery becomes safer and less invasive. There is controversy regarding the morbidity associated with simultaneous, compared with separate or staged, resections.MethodsData for 2005–2008 from the National Surgical Quality Improvement Program (NSQIP) were used to compare morbidity after 19 925 colorectal procedures for CRC (CR group), 2295 hepatic resections for metastatic CRC (HEP group), and 314 simultaneous colorectal and hepatic resections (SIM group).ResultsAn increasing number of simultaneous resections were performed per year. Fewer major colorectal and liver resections were performed in the SIM than in the CR and HEP groups. Patients in the SIM group had a longer operative time and postoperative length of stay compared with those in either the CR or HEP groups. Simultaneous procedures resulted in higher rates of postoperative morbidity and major morbidity than CR procedures, but not HEP procedures. This difference was driven by higher rates of wound and organ space infections, and a greater incidence of septic shock. Mortality rates did not differ among the groups.ConclusionsHospitals in the NSQIP are performing more simultaneous colonic and hepatic resections for CRC. These procedures are associated with increases in operative time, length of stay and rate of perioperative complications. Simultaneous procedures do not, however, increase perioperative mortality
    corecore