382 research outputs found

    Cold Recycling

    Get PDF

    A note on reducing spurious pressure oscillations in fully conservative discontinuous Galerkin simulations of multicomponent flows

    Full text link
    A well-known issue associated with the use of fully conservative schemes in multicomponent-flow simulations is the generation of spurious pressure oscillations at contact interfaces. These oscillations can rapidly lead to solver divergence even in the presence of smooth interfaces that are not fully resolved. In this note, we compare various strategies for reducing such oscillations that do not (a) introduce conservation error, (b) rely on artificial viscosity or limiting, or (c) degrade order of accuracy in smooth regions of the flow. The considered test case is one-dimensional advection of a high-pressure nitrogen/n-dodecane thermal bubble using the thermally perfect gas model. Several results are presented that contradict those corresponding to the more conventional hydrogen/oxygen thermal-bubble case

    Risk Assessment Plan for Petroleum Underground Storage Tanks in Kentucky, Part ll: Diesel, Heating Oil, Other Middle Distillates and Waste Oil

    Get PDF
    This report consists of an appendix :Risk Assessment Plan for Petroleum Underground Storage Tanks in Kentucky and a second appendix: Environmental Half-Life and Ecological Effects of PAH

    Positivity-preserving and entropy-bounded discontinuous Galerkin method for the chemically reacting, compressible Navier-Stokes equations

    Full text link
    This article concerns the development of a fully conservative, positivity-preserving, and entropy-bounded discontinuous Galerkin scheme for simulating the multicomponent, chemically reacting, compressible Navier-Stokes equations with complex thermodynamics. In particular, we extend to viscous flows the fully conservative, positivity-preserving, and entropy-bounded discontinuous Galerkin method for the chemically reacting Euler equations that we previously introduced. An important component of the formulation is the positivity-preserving Lax-Friedrichs-type viscous flux function devised by Zhang [J. Comput. Phys., 328 (2017), pp. 301-343], which was adapted to multicomponent flows by Du and Yang [J. Comput. Phys., 469 (2022), pp. 111548] in a manner that treats the inviscid and viscous fluxes as a single flux. Here, we similarly extend the aforementioned flux function to multicomponent flows but separate the inviscid and viscous fluxes. This separation of the fluxes allows for use of other inviscid flux functions, as well as enforcement of entropy boundedness on only the convective contribution to the evolved state, as motivated by physical and mathematical principles. We also discuss in detail how to account for boundary conditions and incorporate previously developed pressure-equilibrium-preserving techniques into the positivity-preserving framework. Comparisons between the Lax-Friedrichs-type viscous flux function and more conventional flux functions are provided, the results of which motivate an adaptive solution procedure that employs the former only when the element-local solution average has negative species concentrations, nonpositive density, or nonpositive pressure. A variety of multicomponent, viscous flows is computed, ranging from a one-dimensional shock tube problem to multidimensional detonation waves and shock/mixing-layer interaction

    Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah

    Get PDF
    The Uintah Basin in northeastern Utah, a region of intense oil and gas extraction, experienced ozone (O3) concentrations above levels harmful to human health for multiple days during the winters of 2009–2010 and 2010–2011. These wintertime O3 pollution episodes occur during cold, stable periods when the ground is snow-covered, and have been linked to emissions from the oil and gas extraction process. The Uintah Basin Winter Ozone Study (UBWOS) was a field intensive in early 2012, whose goal was to address current uncertainties in the chemical and physical processes that drive wintertime O3 production in regions of oil and gas development. Although elevated O3 concentrations were not observed during the winter of 2011–2012, the comprehensive set of observations tests our understanding of O3 photochemistry in this unusual emissions environment. A box model, constrained to the observations and using the nearexplicit Master Chemical Mechanism (MCM) v3.2 chemistry scheme, has been used to investigate the sensitivities of O3 production during UBWOS 2012. Simulations identify the O3 production photochemistry to be highly radical limited (with a radical production rate significantly smaller than the NOx emission rate). Production of OH from O3 photolysis (through reaction of O(1D) with water vapor) contributed only 170 pptv day−1, 8% of the total primary radical source on average (primary radicals being those produced from non-radical precursors). Other radical sources, including the photolysis of formaldehyde (HCHO, 52 %), nitrous acid (HONO, 26 %), and nitryl chloride (ClNO2, 13 %) were larger. O3 production was also found to be highly sensitive to aromatic volatile organic compound (VOC) concentrations, due to radical amplification reactions in the oxidation scheme of these species. Radical production was shown to be small in comparison to the emissions of nitrogen oxides (NOx), such that NOx acted as the primary radical sink. Consequently, the system was highly VOC sensitive, despite the much larger mixing ratio of total non-methane hydrocarbons (230 ppbv (2080 ppbC), 6 week average) relative to NOx (5.6 ppbv average). However, the importance of radical sources which are themselves derived from NOx emissions and chemistry, such as ClNO2 and HONO, make the response of the system to changes in NOx emissions uncertain. Model simulations attempting to reproduce conditions expected during snow-covered cold-pool conditions show a significant increase in O3 production, although calculated concentrations do not achieve the highest seen during the 2010–2011 O3 pollution events in the Uintah Basin. These box model simulations provide useful insight into the chemistry controlling winter O3 production in regions of oil and gas extraction

    Ozone Photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah

    Get PDF
    The Uintah Basin in northeastern Utah, a region of intense oil and gas extraction, experienced ozone (O3) concentrations above levels harmful to human health for multiple days during the winters of 2009–2010 and 2010–2011. These wintertime O3 pollution episodes occur during cold, stable periods when the ground is snow-covered, and have been linked to emissions from the oil and gas extraction process. The Uintah Basin Winter Ozone Study (UBWOS) was a field intensive in early 2012, whose goal was to address current uncertainties in the chemical and physical processes that drive wintertime O3 production in regions of oil and gas development. Although elevated O3 concentrations were not observed during the winter of 2011–2012, the comprehensive set of observations tests our understanding of O3 photochemistry in this unusual emissions environment. A box model, constrained to the observations and using the near-explicit Master Chemical Mechanism (MCM) v3.2 chemistry scheme, has been used to investigate the sensitivities of O3 production during UBWOS 2012. Simulations identify the O3 production photochemistry to be highly radical limited (with a radical production rate significantly smaller than the NOx emission rate). Production of OH from O3 photolysis (through reaction of O(1D) with water vapor) contributed only 170 pptv day−1, 8% of the total primary radical source on average (primary radicals being those produced from non-radical precursors). Other radical sources, including the photolysis of formaldehyde (HCHO, 52%), nitrous acid (HONO, 26%), and nitryl chloride (ClNO2, 13%) were larger. O3 production was also found to be highly sensitive to aromatic volatile organic compound (VOC) concentrations, due to radical amplification reactions in the oxidation scheme of these species. Radical production was shown to be small in comparison to the emissions of nitrogen oxides (NOx), such that NOx acted as the primary radical sink. Consequently, the system was highly VOC sensitive, despite the much larger mixing ratio of total non-methane hydrocarbons (230 ppbv (2080 ppbC), 6 week average) relative to NOx (5.6 ppbv average). However, the importance of radical sources which are themselves derived from NOx emissions and chemistry, such as ClNO2 and HONO, make the response of the system to changes in NOx emissions uncertain. Model simulations attempting to reproduce conditions expected during snow-covered cold-pool conditions show a significant increase in O3 production, although calculated concentrations do not achieve the highest seen during the 2010–2011 O3 pollution events in the Uintah Basin. These box model simulations provide useful insight into the chemistry controlling winter O3 production in regions of oil and gas extraction

    Multilevel needs assessment of physical activity, sport, psychological needs, and nutrition in rural children and adults

    Get PDF
    IntroductionPhysical activity yields significant benefits, yet fewer than 1 in 4 youth meet federal guidelines. Children in rural areas from low socioeconomic (SES) backgrounds face unique physical activity contextual challenges. In line with Stage 0 with the NIH Stage Model for Behavioral Intervention Development, the objective of the present study was to conduct a community-engaged needs assessment survey with middle school children and adults to identify perceptions, barriers, and facilitators of physical activity, sport, psychological needs, and nutrition from a multi-level lens.MethodsA cross-sectional survey data collection was conducted with children (n = 39) and adults (n = 63) from one middle school community in the Midwestern United States. The child sample was 33% 6th grade; 51% 7th grade and was 49% female. The adult sample was primarily between 30 and 39 years old (70%) and comprised predominantly of females (85%). Multi-level survey design was guided by the psychological needs mini-theory within self-determination theory and aimed to identify individual perceptions, barriers, and facilitators in line with the unique context of the community.ResultsAt the individual level, 71.8% of children and 82.2% of the overall sample (children and adults) were interested in new physical activity/sport programming for their school. Likewise, 89.7% of children and 96.8% of adults agree that PA is good for physical health. For basic psychological needs in the overall sample, relatedness was significantly greater than the autonomy and competence subscales. Children’s fruit and vegetable intake were below recommended levels, yet only 43.6% of children were interested in nutritional programming. Conversely, 61.5% indicated interest at increasing leadership skills. At the policy-systems-environmental level, the respondents’ feedback indicated that the condition and availability of equipment are areas in need of improvement to encourage more physical activity. Qualitative responses are presented within for physical activity-related school policy changes.DiscussionInterventions addressing children’s physical activity lack sustainability, scalability, and impact due to limited stakeholder involvement and often neglect early behavioral intervention stages. The present study identified perspectives, barriers, and facilitators of physical activity, sport, psychological needs, and nutrition in a multi-level context and forms the initial campus-community partnership between scientists and community stakeholders

    A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations

    Get PDF
    Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, ∆fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ mol–1, respectively. The ∆fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 ± 3.2, –446.6 ± 2.7, –702.1 ± 3.5, –487.8 ± 3.4 and –285.2 ± 3.2 kJ mol–1, respectively

    Status Report: Identification of Appropriate Standards for Corrective Action for a Release from Petroleum Underground Storage Tanks, Volume 1

    Get PDF
    This study was undertaken to address the removal and closure of defective petroleum underground storage tanks in Kentucky: To address standards for levels of contamination requiring corrective action consistent with accepted scientific and technical principles. To recommend a matrix or scoring system to be used for (a) ranking sites as to actual or potential harm to human health and the environment caused by a release of petroleum from a petroleum storage tank, and (b) establishing standards and procedures for corrective action that shall adequately protect human health and the environment. To address all compounds individually and collectively known as petroleum. To produce a report that shall be scientifically defensible
    • …
    corecore