48 research outputs found
A search for radical intermediates in the photocycle of LOV domains
LOV domains are the light sensitive parts of phototropins and many other light-activated enzymes that regulate the response to blue light in plants and algae as well as some fungi and bacteria. Unlike all other biological photoreceptors known so far, the photocycle of LOV domains involves the excited triplet state of the chromophore. This chromophore is flavin mononucleotide (FMN) which forms a covalent adduct with a cysteine residue in the signaling state. Since the formation of this adduct from the triplet state involves breaking and forming of two bonds as well as a change from the triplet to the singlet spin state, various intermediates have been proposed, e.g. a protonated triplet state 3FMNH+, the radical anion 2FMNËâ, or the neutral semiquinone radical 2FMNHË. We performed an extensive search for these intermediates by two-dimensional transient absorption (2D-TA) with a streak camera. However, no transient with a rate constant between the decay of fluorescence and the decay of the triplet state could be detected. Analysis of the decay associated difference spectra results in quantum yields for the formation of the adduct from the triplet of ΊA(LOV1) â 0.75 and ΊA(LOV2) â 0.80. This is lower than the values ΊA(LOV1) â 0.95 and ΊA(LOV2) â 0.99 calculated from the rate constants, giving indirect evidence of an intermediate that reacts either to form the adduct or to decay back to the ground state. Since there is no measurable delay between the decay of the triplet and the formation of the adduct, we conclude that this intermediate reacts much faster than it is formed. The LOV1-C57S mutant shows a weak and slowly decaying (Ï > 100 ÎŒs) transient whose decay associated spectrum has bands at 375 and 500 nm, with a shoulder at 400 nm. This transient is insensitive to the pH change in the range 6.5â10.0 but increases on addition of ÎČ-mercaptoethanol as the reducing agent. We assign this intermediate to the radical anion which is protected from protonation by the protein. We propose that the adduct is formed via the same intermediate by combination of the radical ion pair
Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors
Background
Conventional experiments in small scale are often performed in a Black Box fashion, analyzing only the product concentration in the final sample. Online monitoring of relevant process characteristics and parameters such as substrate limitation, product inhibition and oxygen supply is lacking. Therefore, fully equipped laboratory-scale stirred tank bioreactors are hitherto required for detailed studies of new microbial systems. However, they are too spacious, laborious and expensive to be operated in larger number in parallel. Thus, the aim of this study is to present a new experimental approach to obtain dense quantitative process information by parallel use of two small-scale culture systems with online monitoring capabilities: Respiration Activity MOnitoring System (RAMOS) and the BioLector device.
Results
The same mastermix (medium plus microorganisms) was distributed to the different small-scale culture systems: 1) RAMOS device; 2) 48-well microtiter plate for BioLector device; and 3) separate shake flasks or microtiter plates for offline sampling. By adjusting the same maximum oxygen transfer capacity (OTRmax), the results from the RAMOS and BioLector online monitoring systems supplemented each other very well for all studied microbial systems (E. coli, G. oxydans, K. lactis) and culture conditions (oxygen limitation, diauxic growth, auto-induction, buffer effects).
Conclusions
The parallel use of RAMOS and BioLector devices is a suitable and fast approach to gain comprehensive quantitative data about growth and production behavior of the evaluated microorganisms. These acquired data largely reduce the necessary number of experiments in laboratory-scale stirred tank bioreactors for basic process development. Thus, much more quantitative information is obtained in parallel in shorter time.Cluster of Excellence âTailor-Made Fuels from Biomassâ, which is funded by the Excellence Initiative by the German federal and state governments to promote science and research at German universities
Velocity-map ion-imaging of the NO fragment from the UV-photodissociation of nitrosobenzene
The velocity and angular distribution of NO fragments produced by UV photodissocn. of nitrosobenzene have been detd. by velocity-map ion-imaging. Excitation of the S2-state by irradn. into the peak of the first UV absorption band at 290.5 nm leads to a completely isotropic velocity distribution with Gaussian shape. The av. kinetic energy in both fragments correlates with the rotational energy of the NO fragment and increases from 6% of the excess energy for j = 6.5 to 11% for j = 29.5. A similar isotropic distribution albeit with larger av. velocity is obsd. when the ionization laser at 226 nm is also used for photodissocn., corresponding to excitation into a higher electronic state Sn (n >= 3) of nitrosobenzene. It is concluded that photodissocn. occurs on a timescale much slower than rotation of the parent mol., and after redistribution of the excess energy into the vibrational degrees of freedom