615 research outputs found

    Review Of Plant Exploration For Longwood Gardens By T. Aniśko

    Get PDF

    An Inquiry-Infused Introductory Biology Laboratory That Integrates Mendel\u27s Pea Phenotypes With Molecular Mechanisms

    Get PDF
    We developed a multi-week laboratory in which college-level introductory biology students investigate Mendel\u27s stem length phenotype in peas. Students collect, analyze and interpret convergent evidence from molecular and physiological techniques. In weeks 1 and 2, students treat control and experimental plants with Gibberellic Acid (GA) to determine whether uncharacterized short mutant lines are GA responsive. These data allow students to place the mutation in the GA signal transduction pathway. During weeks 2 and 3, plants are genotyped for Mendel\u27s le mutation using a derived cleaved polymorphic sequences (dCAPS) PCR assay. This laboratory allows students to make a direct connection between modern molecular genetics and the easily scored phenotypes Mendel used as the basis of his fundamental discoveries. We administered surveys to assess student gains in accord with four learning goals: understanding the lab, basic science literacy, scientific practices, and working collaboratively. Student confidence increased significantly in the first three, but not in working collaboratively, although students reported greater confidence working in groups than alone

    Some Like It Hot, Some Like It Warm: Phenotyping To Explore Thermotolerance Diversity

    Get PDF
    Plants have evolved overlapping but distinct cellular responses to different aspects of high temperature stress. These responses include basal thermotolerance, short- and long-term acquired thermotolerance, and thermotolerance to moderately high temperatures. This ‘thermotolerance diversity’ means that multiple phenotypic assays are essential for fully describing the functions of genes involved in heat stress responses. A large number of genes with potential roles in heat stress responses have been identified using genetic screens and genome wide expression studies. We examine the range of phenotypic assays that have been used to characterize thermotolerance phenotypes in both Arabidopsis and crop plants. Three major variables differentiate thermotolerance assays: (1) the heat stress regime used, (2) the developmental stage of the plants being studied, and (3) the actual phenotype which is scored. Consideration of these variables will be essential for deepening our understanding of the molecular genetics of plant thermotolerance

    \u3cem\u3eHSFA1d\u3c/em\u3e Regulates The Kinetics Of Heat-Induced \u3cem\u3eHSP17.6\u3c/em\u3e Expression In Arabidopsis

    Get PDF
    Arabidopsis contains four HSFA1 heat shock transcription factors (HSFA1a, HSFA1b, HSFA1d, and HSFA1e) that regulate the primary response to high temperature stress responses. These genes have overlapping functions and, while double and triple HSFA1 mutants have thermotolerance phenotypes, these genes have no reported single mutant thermotolerance phenotypes. We used an automated fluorescence microscopy system to quantitate the expression of a HSP17.6:GFP reporter with high temporal resolution to show that HSFA1d is required for normal heat-induced HSP17.6 expression. HSP17.6 expression is reduced and delayed in hsfa1d-1 mutants. This finding highlights the power of using gene expression kinetics as a quantitative phenotype for discovering the function of genes that exhibit functional redundancy

    The RootScope: A Simple High-Throughput Screening System For Quantitating Gene Expression Dynamics In Plant Roots

    Get PDF
    Background: High temperature stress responses are vital for plant survival. The mechanisms that plants use to sense high temperatures are only partially understood and involve multiple sensing and signaling pathways. Here we describe the development of the RootScope, an automated microscopy system for quantitating heat shock responses in plant roots.Results: The promoter of Hsp17.6 was used to build a Hsp17.6(p):GFP transcriptional reporter that is induced by heat shock in Arabidopsis. An automated fluorescence microscopy system which enables multiple roots to be imaged in rapid succession was used to quantitate Hsp17.6p: GFP response dynamics. Hsp17.6(p):GFP signal increased with temperature increases from 28 degrees C to 37 degrees C. At 40 degrees C the kinetics and localization of the response are markedly different from those at 37 degrees C. This suggests that different mechanisms mediate heat shock responses above and below 37 degrees C. Finally, we demonstrate that Hsp17.6(p):GFP expression exhibits wave like dynamics in growing roots.Conclusions: The RootScope system is a simple and powerful platform for investigating the heat shock response in plants

    Introduction: Globalisation, Value Chains and Development

    Get PDF
    Globalisation has become a catchword for the international economy at the beginning of the twenty-first century. The increasing importance of export-oriented industrialisation has made integration into the global economy virtually synonymous with development for a number of nations. However, there is an acute awareness that the gains from globalisation are very unevenly distributed within as well as between societies. A growing body of work analyses globalisation processes from the perspective of ‘value chains’; that is that international trade in goods and services should not be seen solely, or even mainly, as a multitude of arm’s-length market-based transactions but rather as systems of governance - involving multinational enterprises - that link firms together in a variety of sourcing and contracting arrangements. Understanding how these value chains operate is very important for developing country firms and policymakers because the way chains are structured has implications for newcomers trying to participate in the chain and to gain access to necessary skills, competences and supporting services. Most of the papers in this Bulletin build on the results of a workshop in Bellagio, Italy in September 2000, where all these issues were discussed

    Genetic Interactions Between BOB1 And Multiple 26S Proteasome Subunits Suggest A Role For Proteostasis In Regulating Arabidopsis Development

    Get PDF
    Protein folding and degradation are both required for protein quality control, an essential cellular activity that underlies normal growth and development. We investigated how BOB1, an Arabidopsis thaliana small heat shock protein, maintains normal plant development. bob1 mutants exhibit organ polarity defects and have expanded domains of KNOX gene expression. Some of these phenotypes are ecotype specific suggesting that other genes function to modify them. Using a genetic approach we identified an interaction between BOB1 and FIL, a gene required for abaxial organ identity. We also performed an EMS enhancer screen using the bob1-3 allele to identify pathways that are sensitized by a loss of BOB1 function. This screen identified genetic, but not physical, interactions between BOB1 and the proteasome subunit RPT2a. Two other proteasome subunits, RPN1a and RPN8a, also interact genetically with BOB1. Both BOB1 and the BOB1-interacting proteasome subunits had previously been shown to interact genetically with the transcriptional enhancers AS1 and AS2, genes known to regulate both organ polarity and KNOX gene expression. Our results suggest a model in which BOB1 mediated protein folding and proteasome mediated protein degradation form a functional proteostasis module required for ensuring normal plant development

    T cell receptor sequence clustering and antigen specificity

    Get PDF
    There has been increasing interest in the role of T cells and their involvement in cancer, autoimmune and infectious diseases. However, the nature of T cell receptor (TCR) epitope recognition at a repertoire level is not yet fully understood. Due to technological advances a plethora of TCR sequences from a variety of disease and treatment settings has become readily available. Current efforts in TCR specificity analysis focus on identifying characteristics in immune repertoires which can explain or predict disease outcome or progression, or can be used to monitor the efficacy of disease therapy. In this context, clustering of TCRs by sequence to reflect biological similarity, and especially to reflect antigen specificity have become of paramount importance. We review the main TCR sequence clustering methods and the different similarity measures they use, and discuss their performance and possible improvement. We aim to provide guidance for non-specialists who wish to use TCR repertoire sequencing for disease tracking, patient stratification or therapy prediction, and to provide a starting point for those aiming to develop novel techniques for TCR annotation through clustering
    • …
    corecore