18,077 research outputs found

    Investigation of a universal behavior between N\'eel temperature and staggered magnetization density for a three-dimensional quantum antiferromagnet

    Full text link
    We simulate the three-dimensional quantum Heisenberg model with a spatially anisotropic ladder pattern using the first principles Monte Carlo method. Our motivation is to investigate quantitatively the newly established universal relation TN/c3T_N/\sqrt{c^3} \propto Ms{\cal M}_s near the quantum critical point (QCP) associated with dimerization. Here TNT_N, cc, and Ms{\cal M}_s are the N\'eel temperature, the spinwave velocity, and the staggered magnetization density, respectively. For all the physical quantities considered here, such as TNT_N and Ms{\cal M}_s, our Monte Carlo results agree nicely with the corresponding results determined by the series expansion method. In addition, we find it is likely that the effect of a logarithmic correction, which should be present in (3+1)-dimensions, to the relation TN/c3T_N/\sqrt{c^3} \propto Ms{\cal M}_s near the investigated QCP only sets in significantly in the region with strong spatial anisotropy.Comment: 5 pages, 7 figures, 2 table

    Drifting diffusion on a circle as continuous limit of a multiurn Ehrenfest model

    Full text link
    We study the continuous limit of a multibox Erhenfest urn model proposed before by the authors. The evolution of the resulting continuous system is governed by a differential equation, which describes a diffusion process on a circle with a nonzero drifting velocity. The short time behavior of this diffusion process is obtained directly by solving the equation, while the long time behavior is derived using the Poisson summation formula. They reproduce the previous results in the large MM (number of boxes) limit. We also discuss the connection between this diffusion equation and the Schro¨\ddot{\rm o}dinger equation of some quantum mechanical problems.Comment: 4 pages prevtex4 file, 1 eps figur

    A Panchromatic View of Brown Dwarf Aurorae

    Get PDF
    Stellar coronal activity has been shown to persist into the low-mass star regime, down to late M-dwarf spectral types. However, there is now an accumulation of evidence suggesting that at the end of the main sequence there is a transition in the nature of the magnetic activity from chromospheric and coronal to planet-like and auroral, from local impulsive heating via flares and MHD wave dissipation to energy dissipation from strong large-scale magnetospheric current systems. We examine this transition and the prevalence of auroral activity in brown dwarfs through a compilation of multi-wavelength surveys of magnetic activity, including radio, X-ray, and optical. We compile the results of those surveys and place their conclusions in the context of auroral emission as the consequence of large-scale magnetospheric current systems that accelerate energetic electron beams and drive the particles to impact the cool atmospheric gas. We explore the different manifestation of auroral phenomena in brown dwarf atmospheres, like Hα\alpha, and define their distinguishing characteristics. We conclude that large amplitude photometric variability in the near infrared is most likely a consequence of clouds in brown dwarf atmospheres, but that auroral activity may be responsible for long-lived stable surface features. We report a connection between auroral Hα\alpha emission and quiescent radio emission in ECMI pulsing brown dwarfs, suggesting a potential underlying physical connection between the quiescent and auroral emissions. We also discuss the electrodynamic engines powering brown dwarf aurorae and the possible role of satellites around these systems to both power the aurorae and seed the magnetosphere with plasma.Comment: 26 pages, 17 figures, and 2 tables; accepted to Ap

    Analyses of mean and turbulent motion in the tropics with the use of unequally spaced data

    Get PDF
    Wind velocities from 25 km to 60 km over Ascension Island, Fort Sherman and Kwajalein for the period January 1970 to December 1971 are analyzed in order to achieve a better understanding of the mean flow, the eddy kinetic energy and the Eulerian time spectra of the eddy kinetic energy. Since the data are unequally spaced in time, techniques of one-dimensional covariance theory were utilized and an unequally spaced time series analysis was accomplished. The theoretical equations for two-dimensional analysis or wavenumber frequency analysis of unequally spaced data were developed. Analysis of the turbulent winds and the average seasonal variance and eddy kinetic energy of the turbulent winds indicated that maximum total variance and energy is associated with the east-west velocity component. This is particularly true for long period seasonal waves which dominate the total energy spectrum. Additionally, there is an energy shift for the east-west component into the longer period waves with altitude increasing from 30 km to 50 km

    Characteristics of the motions, turbulence intensity, diffusivity, flux of momentum and sensible heat in the upper atmosphere

    Get PDF
    Analyses of the meteorological rocket data obtained from an experiment conducted at 3-hour intervals at 8 western meridional rocket stations are presented. Large variations in the meridional wind contribute substantially to overall turbulence in the tropical stratosphere. The solar semidiurnal component of wind oscillations in the tropics was observed to be much higher than predicted by theory, often exceeding the magnitude of the diurnal amplitude throughout the stratosphere. The observed value of the solar diurnal amplitude in the stratosphere was in line with theoretical prediction. The solar terdiurnal amplitudes for temperature, meridional and zonal winds were non-negligible and must be considered in any harmonic analysis. Phase angle variation with height was rapid for all harmonics; however, there was general agreement between predicted and observed phase angles. Because of large changes in the mean winds in the mesosphere with season, harmonic determinations are difficult. There appear to be large zonal wind changes even within the same season as mentioned previously. Turbulence diffusivity in the upper stratosphere is greater near the equator than in the mid-latitudes

    An optimum settling problem for time lag systems

    Get PDF
    Lagrange multiplier in Banach space for settling optimal control in time lag syste

    A short-loop algorithm for quantum Monte Carlo simulations

    Full text link
    We present an algorithmic framework for a variant of the quantum Monte Carlo operator-loop algorithm, where non-local cluster updates are constructed in a way that makes each individual loop smaller. The algorithm is designed to increase simulation efficiency in cases where conventional loops become very large, do not close altogether, or otherwise behave poorly. We demonstrate and characterize some aspects of the short-loop on a square lattice spin-1/2 XXZ model where, remarkably, a significant increase in simulation efficiency is observed in some parameter regimes. The simplicity of the model provides a prototype for the use of short-loops on more complicated quantum systems.Comment: 9 pages, 9 figures: new FSS discussion adde

    Mass Spectra of N=2 Supersymmetric SU(n) Chern-Simons-Higgs Theories

    Full text link
    An algebraic method is used to work out the mass spectra and symmetry breaking patterns of general vacuum states in N=2 supersymmetric SU(n) Chern-Simons-Higgs systems with the matter fields being in the adjoint representation. The approach provides with us a natural basis for fields, which will be useful for further studies in the self-dual solutions and quantum corrections. As the vacuum states satisfy the SU(2) algebra, it is not surprising to find that their spectra are closely related to that of angular momentum addition in quantum mechanics. The analysis can be easily generalized to other classical Lie groups.Comment: 17 pages, use revte
    corecore