5,038 research outputs found

    Randomly Charged Polymers, Random Walks, and Their Extremal Properties

    Full text link
    Motivated by an investigation of ground state properties of randomly charged polymers, we discuss the size distribution of the largest Q-segments (segments with total charge Q) in such N-mers. Upon mapping the charge sequence to one--dimensional random walks (RWs), this corresponds to finding the probability for the largest segment with total displacement Q in an N-step RW to have length L. Using analytical, exact enumeration, and Monte Carlo methods, we reveal the complex structure of the probability distribution in the large N limit. In particular, the size of the longest neutral segment has a distribution with a square-root singularity at l=L/N=1, an essential singularity at l=0, and a discontinuous derivative at l=1/2. The behavior near l=1 is related to a another interesting RW problem which we call the "staircase problem". We also discuss the generalized problem for d-dimensional RWs.Comment: 33 pages, 19 Postscript figures, RevTe

    Collapse of Randomly Linked Polymers

    Full text link
    We consider polymers in which M randomly selected pairs of monomers are restricted to be in contact. Analytical arguments and numerical simulations show that an ideal (Gaussian) chain of N monomers remains expanded as long as M<<N. This result is inconsistent with results obtained from free energy considerations by Brygelson and Thirumalai (PRL76, 542 (1996)).Comment: 1 page, 1 postscript figure, LaTe

    Collapse of Randomly Self-Interacting Polymers

    Full text link
    We use complete enumeration and Monte Carlo techniques to study self--avoiding walks with random nearest--neighbor interactions described by v0qiqjv_0q_iq_j, where qi=±1q_i=\pm1 is a quenched sequence of ``charges'' on the chain. For equal numbers of positive and negative charges (N+=NN_+=N_-), the polymer with v0>0v_0>0 undergoes a transition from self--avoiding behavior to a compact state at a temperature θ1.2v0\theta\approx1.2v_0. The collapse temperature θ(x)\theta(x) decreases with the asymmetry x=N+N/(N++N)x=|N_+-N_-|/(N_++N_-)Comment: 8 pages, TeX, 4 uuencoded postscript figures, MIT-CMT-

    Theta-point universality of polyampholytes with screened interactions

    Full text link
    By an efficient algorithm we evaluate exactly the disorder-averaged statistics of globally neutral self-avoiding chains with quenched random charge qi=±1q_i=\pm 1 in monomer i and nearest neighbor interactions qiqj\propto q_i q_j on square (22 monomers) and cubic (16 monomers) lattices. At the theta transition in 2D, radius of gyration, entropic and crossover exponents are well compatible with the universality class of the corresponding transition of homopolymers. Further strong indication of such class comes from direct comparison with the corresponding annealed problem. In 3D classical exponents are recovered. The percentage of charge sequences leading to folding in a unique ground state approaches zero exponentially with the chain length.Comment: 15 REVTEX pages. 4 eps-figures . 1 tabl

    A Model Ground State of Polyampholytes

    Full text link
    The ground state of randomly charged polyampholytes is conjectured to have a structure similar to a necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged stretched `strings'. We suggest a specific structure, within the necklace model, where all the neutral parts of the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of the chain, the longest neutral segment (the 2nd longest neutral segment) compacts into a globule, then the 3rd, and so on. We investigate the size distributions of the longest neutral segments in random charge sequences, using analytical and Monte Carlo methods. We show that the length of the n-th longest neutral segment in a sequence of N monomers is proportional to N/(n^2), while the mean number of neutral segments increases as sqrt(N). The polyampholyte in the ground state within our model is found to have an average linear size proportional to sqrt(N), and an average surface area proportional to N^(2/3).Comment: 8 two-column pages. 5 eps figures. RevTex. Submitted to Phys. Rev.

    From Collapse to Freezing in Random Heteropolymers

    Full text link
    We consider a two-letter self-avoiding (square) lattice heteropolymer model of N_H (out ofN) attracting sites. At zero temperature, permanent links are formed leading to collapse structures for any fraction rho_H=N_H/N. The average chain size scales as R = N^{1/d}F(rho_H) (d is space dimension). As rho_H --> 0, F(rho_H) ~ rho_H^z with z={1/d-nu}=-1/4 for d=2. Moreover, for 0 < rho_H < 1, entropy approaches zero as N --> infty (being finite for a homopolymer). An abrupt decrease in entropy occurs at the phase boundary between the swollen (R ~ N^nu) and collapsed region. Scaling arguments predict different regimes depending on the ensemble of crosslinks. Some implications to the protein folding problem are discussed.Comment: 4 pages, Revtex, figs upon request. New interpretation and emphasis. Submitted to Europhys.Let

    MUBs inequivalence and affine planes

    Full text link
    There are fairly large families of unitarily inequivalent complete sets of N+1 mutually unbiased bases (MUBs) in C^N for various prime powers N. The number of such sets is not bounded above by any polynomial as a function of N. While it is standard that there is a superficial similarity between complete sets of MUBs and finite affine planes, there is an intimate relationship between these large families and affine planes. This note briefly summarizes "old" results that do not appear to be well-known concerning known families of complete sets of MUBs and their associated planes.Comment: This is the version of this paper appearing in J. Mathematical Physics 53, 032204 (2012) except for format changes due to the journal's style policie

    Entropy of Folding of the Triangular Lattice

    Full text link
    The problem of counting the different ways of folding the planar triangular lattice is shown to be equivalent to that of counting the possible 3-colorings of its bonds, a dual version of the 3-coloring problem of the hexagonal lattice solved by Baxter. The folding entropy Log q per triangle is thus given by Baxter's formula q=sqrt(3)(Gamma[1/3])^(3/2)/2pi =1.2087...Comment: 9 pages, harvmac, epsf, uuencoded, 5 figures included, Saclay preprint T/9401
    corecore