5,038 research outputs found
Randomly Charged Polymers, Random Walks, and Their Extremal Properties
Motivated by an investigation of ground state properties of randomly charged
polymers, we discuss the size distribution of the largest Q-segments (segments
with total charge Q) in such N-mers. Upon mapping the charge sequence to
one--dimensional random walks (RWs), this corresponds to finding the
probability for the largest segment with total displacement Q in an N-step RW
to have length L. Using analytical, exact enumeration, and Monte Carlo methods,
we reveal the complex structure of the probability distribution in the large N
limit. In particular, the size of the longest neutral segment has a
distribution with a square-root singularity at l=L/N=1, an essential
singularity at l=0, and a discontinuous derivative at l=1/2. The behavior near
l=1 is related to a another interesting RW problem which we call the "staircase
problem". We also discuss the generalized problem for d-dimensional RWs.Comment: 33 pages, 19 Postscript figures, RevTe
Collapse of Randomly Linked Polymers
We consider polymers in which M randomly selected pairs of monomers are
restricted to be in contact. Analytical arguments and numerical simulations
show that an ideal (Gaussian) chain of N monomers remains expanded as long as
M<<N. This result is inconsistent with results obtained from free energy
considerations by Brygelson and Thirumalai (PRL76, 542 (1996)).Comment: 1 page, 1 postscript figure, LaTe
Collapse of Randomly Self-Interacting Polymers
We use complete enumeration and Monte Carlo techniques to study
self--avoiding walks with random nearest--neighbor interactions described by
, where is a quenched sequence of ``charges'' on the
chain. For equal numbers of positive and negative charges (), the
polymer with undergoes a transition from self--avoiding behavior to a
compact state at a temperature . The collapse temperature
decreases with the asymmetry Comment: 8 pages, TeX, 4 uuencoded postscript figures, MIT-CMT-
Theta-point universality of polyampholytes with screened interactions
By an efficient algorithm we evaluate exactly the disorder-averaged
statistics of globally neutral self-avoiding chains with quenched random charge
in monomer i and nearest neighbor interactions on
square (22 monomers) and cubic (16 monomers) lattices. At the theta transition
in 2D, radius of gyration, entropic and crossover exponents are well compatible
with the universality class of the corresponding transition of homopolymers.
Further strong indication of such class comes from direct comparison with the
corresponding annealed problem. In 3D classical exponents are recovered. The
percentage of charge sequences leading to folding in a unique ground state
approaches zero exponentially with the chain length.Comment: 15 REVTEX pages. 4 eps-figures . 1 tabl
A Model Ground State of Polyampholytes
The ground state of randomly charged polyampholytes is conjectured to have a
structure similar to a necklace, made of weakly charged parts of the chain,
compacting into globules, connected by highly charged stretched `strings'. We
suggest a specific structure, within the necklace model, where all the neutral
parts of the chain compact into globules: The longest neutral segment compacts
into a globule; in the remaining part of the chain, the longest neutral segment
(the 2nd longest neutral segment) compacts into a globule, then the 3rd, and so
on. We investigate the size distributions of the longest neutral segments in
random charge sequences, using analytical and Monte Carlo methods. We show that
the length of the n-th longest neutral segment in a sequence of N monomers is
proportional to N/(n^2), while the mean number of neutral segments increases as
sqrt(N). The polyampholyte in the ground state within our model is found to
have an average linear size proportional to sqrt(N), and an average surface
area proportional to N^(2/3).Comment: 8 two-column pages. 5 eps figures. RevTex. Submitted to Phys. Rev.
From Collapse to Freezing in Random Heteropolymers
We consider a two-letter self-avoiding (square) lattice heteropolymer model
of N_H (out ofN) attracting sites. At zero temperature, permanent links are
formed leading to collapse structures for any fraction rho_H=N_H/N. The average
chain size scales as R = N^{1/d}F(rho_H) (d is space dimension). As rho_H -->
0, F(rho_H) ~ rho_H^z with z={1/d-nu}=-1/4 for d=2. Moreover, for 0 < rho_H <
1, entropy approaches zero as N --> infty (being finite for a homopolymer). An
abrupt decrease in entropy occurs at the phase boundary between the swollen (R
~ N^nu) and collapsed region. Scaling arguments predict different regimes
depending on the ensemble of crosslinks. Some implications to the protein
folding problem are discussed.Comment: 4 pages, Revtex, figs upon request. New interpretation and emphasis.
Submitted to Europhys.Let
MUBs inequivalence and affine planes
There are fairly large families of unitarily inequivalent complete sets of
N+1 mutually unbiased bases (MUBs) in C^N for various prime powers N. The
number of such sets is not bounded above by any polynomial as a function of N.
While it is standard that there is a superficial similarity between complete
sets of MUBs and finite affine planes, there is an intimate relationship
between these large families and affine planes. This note briefly summarizes
"old" results that do not appear to be well-known concerning known families of
complete sets of MUBs and their associated planes.Comment: This is the version of this paper appearing in J. Mathematical
Physics 53, 032204 (2012) except for format changes due to the journal's
style policie
Entropy of Folding of the Triangular Lattice
The problem of counting the different ways of folding the planar triangular
lattice is shown to be equivalent to that of counting the possible 3-colorings
of its bonds, a dual version of the 3-coloring problem of the hexagonal lattice
solved by Baxter. The folding entropy Log q per triangle is thus given by
Baxter's formula q=sqrt(3)(Gamma[1/3])^(3/2)/2pi =1.2087...Comment: 9 pages, harvmac, epsf, uuencoded, 5 figures included, Saclay
preprint T/9401
- …
