47 research outputs found

    Fermionic concurrence in the extended Hubbard dimer

    Full text link
    In this paper, we introduce and study the fermionic concurrence in a two-site extended Hubbard model. Its behaviors both at the ground state and finite temperatures as function of Coulomb interaction UU (on-site) and VV (nearest-neighbor) are obtained analytically and numerically. We also investigate the change of the concurrence under a nonuniform field, including local potential and magnetic field, and find that the concurrence can be modulated by these fields.Comment: 5 pages, 7 figure

    Evaluation of treatment response, drug resistance and HIV-1 variability among adolescents on first- And second-line antiretroviral therapy: A study protocol for a prospective observational study in the centre region of Cameroon (EDCTP READY-study)

    Get PDF
    BackgroundSub-Saharan Africa (SSA) alone has nine out of every 10 children living with HIV globally and monitoring in this setting remains suboptimal, even as these children grow older. With scalability of antiretroviral therapy (ART), several HIV-infected children are growing towards adolescence (over 2.1 million), with the potentials to reach adulthood. However, despite an overall reduction in HIV-related mortality, there are increasing deaths among adolescents living with HIV (ADLHIV), with limited evidence for improved policy-making. Of note, strategies for adolescent transition from pediatrics to adult-healthcare are critical to ensure successful treatment response and longer life expectancy. Interestingly, with uptakes in prevention of mother-to-child transmission, challenges in ART programs, and high viremia among children in SSA, the success rate of paediatric ART might be quickly jeopardised, with possible HIV-1 drug-resistance (HIVDR) emergence, especially after years of paediatric ART exposure. Therefore, monitoring ART response in adolescents and evaluating HIVDR patterns might limit disease progression and guide on subsequent ART options for SSA ADLHIV.ObjectivesAmong Cameroonian ADLHIV receiving ART, we shall evaluate the rate of immunovirologic failure, acquired HIVDR-associated mutations, HIV-1 subtype distribution, genetic variability in circulating (plasma) versus archived (cellular) viral strains, and HIVDR early warning indicators (EWIs) at different time-points.MethodsA prospective and observational study will be conducted among 250 ADLHIV (10-19years old) receiving ART in the centre region of Cameroon, and followed-up at 6 and 12months after enrollment. Following consecutive sampling at enrolment, plasma viral load and CD4/CD8 count will be measured, and genotypic resistance testing (GRT) will be performed both in plasma and in buffy coat for participants experiencing virological failure (two consecutive viremia >=1000 copies/ml). Plasma viral load and CD4/CD8 will be monitored for all participants at 6 and 12months after enrolment. HIVDR-EWIs will be monitored and survival analysis performed during the 12months follow-up. Primary outcomes are rates of virological failure, acquired-HIVDR, and mortality.DiscussionOur findings will provide evidence-based recommendations to ensure successful transition from paediatrics to adult ART regimens and highlight further needs of active ART combinations, for reduced morbidity and mortality in populations of ADLHIV within SSA

    Entanglement and correlation in anisotropic quantum spin systems

    Full text link
    Analytical expressions for the entanglement measures concurrence, i-concurrence and 3-tangle in terms of spin correlation functions are derived using general symmetries of the quantum spin system. These relations are exploited for the one-dimensional XXZ-model, in particular the concurrence and the critical temperature for disentanglement are calculated for finite systems with up to six qubits. A recent NMR quantum error correction experiment is analyzed within the framework of the proposed theoretical approach.Comment: 8 pages, 3 figure

    Sturmian bases for two-electron systems in hyperspherical coordinates

    Get PDF
    We give a detailed account of an ab\it{ab} initio\it{initio} spectral approach for the calculation of energy spectra of two active electron atoms in a system of hyperspherical coordinates. In this system of coordinates, the Hamiltonian has the same structure as the one of atomic hydrogen with the Coulomb potential expressed in terms of a hyperradius and the nuclear charge replaced by an angle dependent effective charge. The simplest spectral approach consists in expanding the hyperangular wave function in a basis of hyperspherical harmonics. This expansion however, is known to be very slowly converging. Instead, we introduce new hyperangular sturmian functions. These functions do not have an analytical expression but they treat the first term of the multipole expansion of the electron-electron interaction potential, namely the radial electron correlation, exactly. The properties of these new functions are discussed in detail. For the basis functions of the hyperradius, several choices are possible. In the present case, we use Coulomb sturmian functions of half integer angular momentum. We show that, in the case of H−^-, the accuracy of the energy and the width of the resonance states obtained through a single diagonalization of the Hamiltonian, is comparable to the values given by state-of-the-art methods while using a much smaller basis set. In addition, we show that precise values of the electric-dipole oscillator strengths for S→PS\rightarrow P transitions in helium are obtained thereby confirming the accuracy of the bound state wave functions generated with the present method.Comment: 28 pages, 4 figure

    Alarming rates of virological failure and HIV-1 drug resistance amongst adolescents living with perinatal HIV in both urban and rural settings: evidence from the EDCTP READY-study in Cameroon

    Get PDF
    Objectives: Adolescents living with perinatal HIV infection (ALPHI) experience persistently high mortality rates, particularly in resource-limited settings. It is therefore clinically important for us to understand the therapeutic response, acquired HIV drug resistance (HIVDR) and associated factors among ALPHI, according to geographical location. Methods: A study was conducted among consenting ALPHI in two urban and two rural health facilities in the Centre Region of Cameroon. World Health Organization (WHO) clinical staging, self-reported adherence, HIVDR early warning indicators (EWIs), immunological status (CD4 count) and plasma viral load (VL) were assessed. For those experiencing virological failure (VF, VL â‰„ 1000 copies/mL), HIVDR testing was performed and interpreted using the Stanford HIV Drug Resistance Database v.8.9-1. Results: Of the 270 participants, most were on nonnucleoside reverse transcriptase inhibitor (NNRTI)-based regimens (61.7% urban vs. 82.2% rural), and about one-third were poorly adherent (30.1% vs. 35.1%). Clinical failure rates (WHO-stage III/IV) in both settings were < 15%. In urban settings, the immunological failure (IF) rate (CD4  < 250 cells/ÎŒL) was 15.8%, statistically associated with late adolescence, female gender and poor adherence. The VF rate was 34.2%, statistically associated with poor adherence and NNRTI-based antiretroviral therapy. In the rural context, the IF rate was 26.9% and the VF rate was 52.7%, both statistically associated with advanced clinical stages. HIVDR rate was over 90% in both settings. EWIs were delayed drug pick-up, drug stock-outs and suboptimal viral suppression. Conclusions: Poor adherence, late adolescent age, female gender and advanced clinical staging worsen IF. The VF rate is high and consistent with the presence of HIVDR in both settings, driven by poor adherence, NNRTI-based regimen and advanced clinical staging

    Various correlations in a Heisenberg XXZ spin chain both in thermal equilibrium and under the intrinsic decoherence

    Full text link
    In this paper we discuss various correlations measured by the concurrence (C), classical correlation (CC), quantum discord (QD), and geometric measure of discord (GMD) in a two-qubit Heisenberg XXZ spin chain in the presence of external magnetic field and Dzyaloshinskii-Moriya (DM) anisotropic antisymmetric interaction. Based on the analytically derived expressions for the correlations for the cases of thermal equilibrium and the inclusion of intrinsic decoherence, we discuss and compare the effects of various system parameters on the correlations in different cases. The results show that the anisotropy Jz is considerably crucial for the correlations in thermal equilibrium at zero temperature limit but ineffective under the consideration of the intrinsic decoherence, and these quantities decrease as temperature T rises on the whole. Besides, J turned out to be constructive, but B be detrimental in the manipulation and control of various quantities both in thermal equilibrium and under the intrinsic decoherence which can be avoided by tuning other system parameters, while D is constructive in thermal equilibrium, but destructive in the case of intrinsic decoherence in general. In addition, for the initial state ∣Κ1(0)>=12(∣01>+∣10>)|\Psi_1(0) > = \frac{1}{\sqrt{2}} (|01 > + |10 >), all the correlations except the CC, exhibit a damping oscillation to a stable value larger than zero following the time, while for the initial state ∣Κ2(0)>=12(∣00>+∣11>)|\Psi_2(0) > = \frac{1}{\sqrt{2}} (|00 > + |11 >), all the correlations monotonously decrease, but CC still remains maximum. Moreover, there is not a definite ordering of these quantities in thermal equilibrium, whereas there is a descending order of the CC, C, GMD and QD under the intrinsic decoherence with a nonnull B when the initial state is ∣Κ2(0)>|\Psi_2(0) >.Comment: 8 pages, 7 figure
    corecore