48 research outputs found

    Charmless B→PPB \to PP decays and the new physics effects in the minimal supergravity model

    Full text link
    By employing the QCD factorization approach, we calculate the new physics contributions to the branching radios of the two-body charmless B→PP B \to PP decays in the framework of the minimal supergravity (mSUGRA) model. Within the considered parameter space, we find that (a) the supersymmetric (SUSY) corrections to the Wilson coefficients CkC_k (k=3−6k=3-6) are very small and can be neglected safely, but the leading order SUSY contributions to C7γ(MW)C_{7\gamma}(M_W) and C8g(MW)C_{8g}(M_W) can be rather large and even change the sign of the corresponding coefficients in the standard model; (b) the possible SUSY contributions to those penguin-dominated decays in mSUGRA model can be as large as 30−5030-50%; (c) for the well measured B→KπB \to K \pi decays, the significant SUSY contributions play an important rule to improve the consistency of the theoretical predictions with the data; (d) for B→Kη′B \to K \eta' decays, the theoretical predictions of the corresponding branching ratios become consistent with the data within one standard deviation after the inclusion of the large SUSY contributions in the mSUGRA model.Comment: 31 pages, Latex file, 4 ps and eps figures, minor corrections, final version to appear in Physical Review

    Optimal generalization of power filters for gravitational wave bursts, from single to multiple detectors

    Full text link
    Searches for gravitational wave signals which do not have a precise model describing the shape of their waveforms are often performed using power detectors based on a quadratic form of the data. A new, optimal method of generalizing these power detectors so that they operate coherently over a network of interferometers is presented. Such a mode of operation is useful in obtaining better detection efficiencies, and better estimates of the position of the source of the gravitational wave signal. Numerical simulations based on a realistic, computationally efficient hierarchical implementation of the method are used to characterize its efficiency, for detection and for position estimation. The method is shown to be more efficient at detecting signals than an incoherent approach based on coincidences between lists of events. It is also shown to be capable of locating the position of the source.Comment: 16 pages, 5 figure

    Branching ratios and CP-violating asymmetries of Bs→h1h2B_s \to h_1 h_2 decays in the general two-Higgs doublet models

    Full text link
    Based on the low-energy effective Hamiltonian with the generalized factorization, we calculate the new physics contributions to branching ratios and CP-violating asymmetries of the charmless hadronic decays Bs→h1h2B_s \to h_1 h_2 in the standard model and the general two-Higgs doublet models (models I, II, and III). Within the considered paramter space, we find the following. (a) In models I and II, the new physics corrections are always small in size and will be masked by other larger known theoretical uncertainties. (b) In model III, the new physics corrections to the branching ratios of those QCD penguin-dominated decays \ov B_s \to K^0\etapp, K^+ K^{-*}, etc., are large in size and insensitive to the variations of \mhp and \nceff. For tree- or electroweak penguin-dominated decay modes, however, the new physics corrections are very small in size. (c) For \ov B_s \to K^+ K^{-*} and other seven decay modes, the branching ratios are at the level of (1−3)×10−5(1-3)\times 10^{-5} and will be measurable at the future hadron colliders with large bb production. (d) Among the studied thirty nine BsB_s meson decay modes, seven of them can have a CP-violating asymmetry ACP{\cal A}_{CP} larger than 20% in magnitude. The new physics corrections are small or moderate in magnitude. (e) Because of its large and \nceff stable branching ratio and CP violating asymmetry, the decay \ov B_s \to K^+ K^{-*} seems to be the "best" channel to find CP violation of BsB_s system through studies of two-body charmless decays of BsB_s meson.Comment: 39 pages, Revtex, 9 eps figures, final version accepted for publication in Phys.Rev.

    Charm multiplicity and the branching ratios of inclusive charmless b quark decays in the general two-Higgs-doublet models

    Full text link
    In the framework of general two-Higgs-doublet models, we calculate the branching ratios of various inclusive charmless b decays by using the low energy effective Hamiltonian including next-to-leading order QCD corrections, and examine the current status and the new physics effects on the determination of the charm multiplicity ncn_c and semileptonic branching ratio BSLB_{SL}. Within the considered parameter space, the enhancement to the ratio BR(b→sg)BR(b \to s g) due to the charged-Higgs penguins can be as large as a factor of 8 (3) in the model III (II), while the ratio BR(b→nocharm)BR(b \to no charm) can be increased from the standard model prediction of 2.49% to 4.91% (2.99%) in the model III (II). Consequently, the value of BSLB_{SL} and ncn_c can be decreased simultaneously in the model III. The central value of BSLB_{SL} will be lowered slightly by about 0.003, but the ratio ncn_c can be reduced significantly from the theoretical prediction of nc=1.28±0.05n_c= 1.28 \pm 0.05 in the SM to nc=1.23±0.05n_c= 1.23 \pm 0.05, 1.18±0.051.18 \pm 0.05 for mH+=200,100m_{H^+}=200, 100 GeV, respectively. We find that the predicted ncn_c and the measured ncn_c now agree within roughly one standard deviation after taking into account the effects of gluonic charged Higgs penguins in the model III with a relatively light charged Higgs boson.Comment: 25 pages, Latex file, axodraw.sty, 6 figures. Final version to be published in Phys.Rev.

    Inelastic Rescattering and CP Asymmetries in D -> pi+ pi-, pi0 pi0

    Full text link
    We study the direct CP violation induced by inelastic final state interaction (FSI) rescattering in D→ππD\to\pi\pi modes, and find that the resultant CP asymmetry is about 10−410^{-4} which is larger than ϵ′\epsilon' in the K-system. Our estimation is based on well-established theories and experiment measured data, so there are almost no free parameters except the weak phase δ13\delta_{13} in the CKM matrix.Comment: 9 page

    B^0-\bar{B}^0 mixing and B \to X_s \gamma decay in the third type 2HDM: effects of NLO QCD contributions

    Full text link
    In this paper, we calculated the next-to-leading order (NLO) new physics contributions to the mass splitting \dmd and the branching ratio \brbxsga induced by the charged Higgs loop diagrams in the third type of two-Higgs-doublet models (model III) and draw the constraints on the free parameters of model III. For the model III under consideration, we found that (a) an upper limit |\ltt|\leq 1.7 is obtained from the precision data of \dmd=0.502 \pm 0.007 ps^{-1}, while |\ltt| \approx 0.5 is favored phenomenologicaly; (b) for B→XsγB \to X_s \gamma decay, the NLO QCD contributions tend to cancel the LO new physics contributions; (c) a light charged Higgs boson with a mass around or even less than 200 GeV is still allowed at NLO level by the measured branching ratio \brbxsga: numerically, 188 \leq \mh \leq 215 GeV for (|\ltt|,|\lbb|)=(0.5,18); (d) the NLO QCD contributions tend to cancel the LO contributions effectively, the lower limit on \mh is consequently decreased by about 200 GeV; (e) the allowed region of \mh will be shifted toward heavy mass end for a non-zero relative phase θ\theta between the Yukawa couplings \ltt and \lbb. The numerical results for the conventional model II are also presented for the sake of a comparison.Comment: 42 pages, 18 eps figures, Revtex, new references adde
    corecore