7,896 research outputs found

    Dynamical density functional theory for dense atomic liquids

    Get PDF
    Starting from Newton's equations of motion, we derive a dynamical density functional theory (DDFT) applicable to atomic liquids. The theory has the feature that it requires as input the Helmholtz free energy functional from equilibrium density functional theory. This means that, given a reliable equilibrium free energy functional, the correct equilibrium fluid density profile is guaranteed. We show that when the isothermal compressibility is small, the DDFT generates the correct value for the speed of sound in a dense liquid. We also interpret the theory as a dynamical equation for a coarse grained fluid density and show that the theory can be used (making further approximations) to derive the standard mode coupling theory that is used to describe the glass transition. The present theory should provide a useful starting point for describing the dynamics of inhomogeneous atomic fluids.Comment: 14 pages, accepted for publication in J. Phys.: Condens. Matte

    Cosmological Constraints on Late-time Entropy Production

    Get PDF
    We investigate cosmological effects concerning the late-time entropy production due to the decay of non-relativistic massive particles. The thermalization process of neutrinos after the entropy production is properly solved by using the Boltzmann equation. If a large entropy production takes place at late time t≃\simeq 1 sec, it is found that a large fraction of neutrinos cannot be thermalized. This fact loosens the tight constraint on the reheating temperature T_R from the big bang nucleosynthesis and T_R could be as low as 0.5 MeV. The influence on the large scale structure formation and cosmic microwave background anisotropies is also discussed.Comment: 4 pages, using RevTeX and five postscript figures, comments added, to appear in Phys. Rev. Let

    Critical behavior of self-assembled rigid rods on triangular and honeycomb lattices

    Full text link
    Using Monte Carlo simulations and finite-size scaling analysis, the critical behavior of self-assembled rigid rods on triangular and honeycomb lattices at intermediate density has been studied. The system is composed of monomers with two attractive (sticky) poles that, by decreasing temperature or increasing density, polymerize reversibly into chains with three allowed directions and, at the same time, undergo a continuous isotropic-nematic (IN) transition. The determination of the critical exponents, along with the behavior of Binder cumulants, indicate that the IN transition belongs to the q=1 Potts universality class.Comment: 6 pages, 5 figure

    Thermal Conductivity and Chiral Critical Point in Heavy Ion Collisions

    Full text link
    Background: Quantum Chromodynamics is expected to have a phase transition in the same static universality class as the 3D Ising model and the liquid-gas phase transition. The properties of the equation of state, the transport coefficients, and especially the location of the critical point are under intense theoretical investigation. Some experiments are underway, and many more are planned, at high energy heavy ion accelerators. Purpose: Develop a model of the thermal conductivity, which diverges at the critical point, and use it to study the impact of hydrodynamic fluctuations on observables in high energy heavy ion collisions. Methods: We apply mode coupling theory, together with a previously developed model of the free energy that incorporates the critical exponents and amplitudes, to construct a model of the thermal conductivity in the vicinity of the critical point. The effect of the thermal conductivity on correlation functions in heavy ion collisions is studied in a boost invariant hydrodynamic model via fluctuations, or noise. Results: We find that the closer a thermodynamic trajectory comes to the critical point the greater is the magnitude of the fluctuations in thermodynamic variables and in the 2-particle correlation functions in momentum space. Conclusions: It may be possible to discern the existence of a critical point, its location, and thermodynamic and transport properties near to it in heavy ion collisions using the methods developed here.Comment: 36 pages, 8 figures. Version published in Phys.Rev.C86, 054911 (2012). It contains some minor improvements with respect to v1: further clarifications, small changes on figures and two extra reference

    Long Time Tail of the Velocity Autocorrelation Function in a Two-Dimensional Moderately Dense Hard Disk Fluid

    Full text link
    Alder and Wainwright discovered the slow power decay ∌t−d/2\sim t^{-d/2} (dd:dimension) of the velocity autocorrelation function in moderately dense hard sphere fluids using the event-driven molecular dynamics simulations. In the two-dimensional case, the diffusion coefficient derived using the time correlation expression in linear response theory shows logarithmic divergence, which is called the ``2D long-time-tail problem''. We revisited this problem to perform a large-scale, long-time simulation with one million hard disks using a modern efficient algorithm and found that the decay of the long tail in moderately dense fluids is slightly faster than the power decay (∌1/t\sim 1/t). We also compared our numerical data with the prediction of the self-consistent mode-coupling theory in the long time limit (∌1/(tln⁥t)\sim 1/(t\sqrt{\ln{t}})).Comment: 5 pages, 5 figures, to appear in Phys. Rev.

    Coexistence of Superconductivity and Antiferromagnetism in Heavy-Fermion Superconductor CeCu_{2}(Si_{1-x}Ge_{x})_{2} Probed by Cu-NQR --A Test Case for the SO(5) Theory--

    Full text link
    We report on the basis of Cu-NQR measurements that superconductivity (SC) and antiferromagnetism (AF) coexist on a microscopic level in CeCu_{2}(Si_{1-x}Ge_{x})_{2}, once a tiny amount of 1%Ge (x = 0.01) is substituted for Si. This coexistence arises because Ge substitution expands the unit-cell volume in nearly homogeneous CeCu2Si2 where the SC coexists with slowly fluctuating magnetic waves. We propose that the underlying exotic phases of SC and AF in either nearly homogeneous or slightly Ge substituted CeCu2Si2 are accountable based on the SO(5) theory that unifies the SC and AF. We suggest that the mechanism of the SC and AF is common in CeCu2Si2.Comment: 7 pages with 6 figures embedded in the text. To be published in J. Phys. Condens. Matter, 200

    Curvaton Scenario with Affleck-Dine Baryogenesis

    Full text link
    We discuss the curvaton scenario with the Affleck-Dine baryogenesis. In this scenario, non-vanishing baryonic entropy fluctuation may be generated even without primordial fluctuation of the Affleck-Dine field. Too large entropy fluctuation is inconsistent with the observations and hence constraints on the curvaton scenario with the Affleck-Dine baryogenesis are obtained. We calculate the baryonic entropy fluctuation (as well as other cosmological density fluctuations) in this case and derive constraints. Implications to some of the models of the curvaton are also discussed.Comment: 16 pages,2 figure

    Frequency Dependent Viscosity Near the Critical Point: The Scale to Two Loop Order

    Full text link
    The recent accurate measurements of Berg, Moldover and Zimmerli of the viscoelastic effect near the critical point of xenon has shown that the scale factor involved in the frequency scaling is about twice the scale factor obtained theoretically. We show that this discrepancy is a consequence of using first order perturbation theory. Including two loop contribution goes a long way towards removing the discrepancy.Comment: No of pages:7,Submitted to PR-E(Rapid Communication),No of EPS files:

    Superheavy Dark Matter and Thermal Inflation

    Get PDF
    The thermal inflation is the most plausible mechanism that solves the cosmological moduli problem naturally. We discuss relic abundance of superheavy particle XX in the presence of the thermal inflation assuming that its lifetime is longer than the age of the universe, and show that the long-lived particle XX of mass 101210^{12}--101410^{14} GeV may form a part of the dark matter in the present universe in a wide region of parameter space of the thermal inflation model. The superheavy dark matter of mass ∌1013\sim 10^{13} GeV may be interesting in particular, since its decay may account for the observed ultra high-energy cosmic rays if the lifetime of the XX particle is sufficiently long.Comment: 13 pages (RevTex file) including 8 figures, revised version to be published in Physical Review
    • 

    corecore