2,758 research outputs found

    Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate

    Get PDF
    Isoprene has the highest emission into Earth’s atmosphere of any nonmethane hydrocarbon. Atmospheric processing of alkenes, including isoprene, via ozonolysis leads to the formation of zwitterionic reactive intermediates, known as Criegee intermediates (CIs). Direct studies have revealed that reactions involving simple CIs can significantly impact the tropospheric oxidizing capacity, enhance particulate formation, and degrade local air quality. Methyl vinyl ketone oxide (MVK-oxide) is a four-carbon, asymmetric, resonance-stabilized CI, produced with 21 to 23% yield from isoprene ozonolysis, yet its reactivity has not been directly studied. We present direct kinetic measurements of MVK-oxide reactions with key atmospheric species using absorption spectroscopy. Direct UV-Vis absorption spectra from two independent flow cell experiments overlap with the molecular beam UV-Vis-depletion spectra reported recently [M. F. Vansco, B. Marchetti, M. I. Lester, J. Chem. Phys. 149, 44309 (2018)] but suggest different conformer distributions under jet-cooled and thermal conditions. Comparison of the experimental lifetime herein with theory indicates only the syn-conformers are observed; anti-conformers are calculated to be removed much more rapidly via unimolecular decay. We observe experimentally and predict theoretically fast reaction of syn-MVK-oxide with SO₂ and formic acid, similar to smaller alkyl-substituted CIs, and by contrast, slow removal in the presence of water. We determine products through complementary multiplexed photoionization mass spectrometry, observing SO₃ and identifying organic hydroperoxide formation from reaction with SO₂ and formic acid, respectively. The tropospheric implications of these reactions are evaluated using a global chemistry and transport model

    Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate

    Get PDF
    Isoprene has the highest emission into Earth’s atmosphere of any nonmethane hydrocarbon. Atmospheric processing of alkenes, including isoprene, via ozonolysis leads to the formation of zwitterionic reactive intermediates, known as Criegee intermediates (CIs). Direct studies have revealed that reactions involving simple CIs can significantly impact the tropospheric oxidizing capacity, enhance particulate formation, and degrade local air quality. Methyl vinyl ketone oxide (MVK-oxide) is a four-carbon, asymmetric, resonance-stabilized CI, produced with 21 to 23% yield from isoprene ozonolysis, yet its reactivity has not been directly studied. We present direct kinetic measurements of MVK-oxide reactions with key atmospheric species using absorption spectroscopy. Direct UV-Vis absorption spectra from two independent flow cell experiments overlap with the molecular beam UV-Vis-depletion spectra reported recently [M. F. Vansco, B. Marchetti, M. I. Lester, J. Chem. Phys. 149, 44309 (2018)] but suggest different conformer distributions under jet-cooled and thermal conditions. Comparison of the experimental lifetime herein with theory indicates only the syn-conformers are observed; anti-conformers are calculated to be removed much more rapidly via unimolecular decay. We observe experimentally and predict theoretically fast reaction of syn-MVK-oxide with SO₂ and formic acid, similar to smaller alkyl-substituted CIs, and by contrast, slow removal in the presence of water. We determine products through complementary multiplexed photoionization mass spectrometry, observing SO₃ and identifying organic hydroperoxide formation from reaction with SO₂ and formic acid, respectively. The tropospheric implications of these reactions are evaluated using a global chemistry and transport model

    Mitochondrial DNA Copy Number Is Associated with Breast Cancer Risk

    Get PDF
    Mitochondrial DNA (mtDNA) copy number in peripheral blood is associated with increased risk of several cancers. However, data from prospective studies on mtDNA copy number and breast cancer risk are lacking. We evaluated the association between mtDNA copy number in peripheral blood and breast cancer risk in a nested case-control study of 183 breast cancer cases with pre-diagnostic blood samples and 529 individually matched controls among participants of the Singapore Chinese Health Study. The mtDNA copy number was measured using real time PCR. Conditional logistic regression analyses showed that there was an overall positive association between mtDNA copy number and breast cancer risk (Ptrend = 0.01). The elevated risk for higher mtDNA copy numbers was primarily seen for women with <3 years between blood draw and cancer diagnosis; ORs (95% CIs) for 2nd, 3rd, 4th, and 5th quintile of mtDNA copy number were 1.52 (0.61, 3.82), 2.52 (1.03, 6.12), 3.12 (1.31, 7.43), and 3.06 (1.25, 7.47), respectively, compared with the 1st quintile (Ptrend = 0.004). There was no association between mtDNA copy number and breast cancer risk among women who donated a blood sample ≥3 years before breast cancer diagnosis (Ptrend = 0.41). This study supports a prospective association between increased mtDNA copy number and breast cancer risk that is dependent on the time interval between blood collection and breast cancer diagnosis. Future studies are warranted to confirm these findings and to elucidate the biological role of mtDNA copy number in breast cancer risk. © 2013 Thyagarajan et al

    Asymmetric charge carrier transfer and transport in planar lead halide perovskite solar cells

    Get PDF
    Understanding charge carrier extraction from the perovskite photoactive layer is critical to optimizing the design of perovskite solar cells. Herein, we demonstrate a simple time-resolved photoluminescence method to characterize the kinetics of charge transport across the bulk perovskite and charge transfer from the perovskite layer to the interlayers, elucidating the dependence of these dynamics on film thickness, grain boundaries (GBs), and interlayers. Using asymmetric laser excitation, we selectively probe charge transport by generating charges both close to and far from the heterojunction interface and correlate these results with device performance. We observe that both film thickness and GBs affect the asymmetry between electron and hole charge transport across the bulk perovskite and charge transfer from the bulk perovskite to the respective interlayers

    11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor

    Get PDF
    Simutaneously high open circuit voltage and high short circuit current density is a big challenge for achieving high efficiency polymer solar cells due to the excitonic nature of organic semdonductors. Herein, we developed a trialkylsilyl substituted 2D-conjugated polymer with the highest occupied molecular orbital level down-shifted by Si-C bond interaction. The polymer solar cells obtained by pairing this polymer with a non-fullerene acceptor demonstrated a high power conversion efficiency of 11.41% with both high open circuit voltage of 0.94 V and high short circuit current density of 17.32 mA cm(-2) benefitted from the complementary absorption of the donor and acceptor, and the high hole transfer efficiency from acceptor to donor although the highest occupied molecular orbital level difference between the donor and acceptor is only 0.11 eV. The results indicate that the alkylsilyl substitution is an effective way in designing high performance conjugated polymer photovoltaic materials.open

    Using an oblique incident laser beam to measure the optical properties of stomach mucosa/submucosa tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of the study is to determine the optical properties and their differences for normal human stomach mucosa/submucosa tissue in the cardiac orifice <it>in vitro </it>at 635, 730, 808, 890 and 980 nm wavelengths of laser.</p> <p>Methods</p> <p>The measurements were performed using a CCD detector, and the optical properties were assessed from the measurements using the spatially resolved reflectance, and nonlinear fitting of diffusion equation.</p> <p>Results</p> <p>The results of measurement showed that the absorption coefficients, the reduced scattering coefficients, the optical penetration depths, the diffusion coefficients, the diffuse reflectance and the shifts of diffuse reflectance of tissue samples at five different wavelengths vary with a change of wavelength. The maximum absorption coefficient for tissue samples is 0.265 mm<sup>-1 </sup>at 980 nm, and the minimum absorption coefficient is 0.0332 mm<sup>-1 </sup>at 730 nm, and the maximum difference in the absorption coefficients is 698% between 730 and 980 nm, and the minimum difference is 1.61% between 635 and 808 nm. The maximum reduced scattering coefficient for tissue samples is 1.19 mm<sup>-1 </sup>at 635 nm, and the minimum reduced scattering coefficient is 0.521 mm<sup>-1 </sup>at 980 nm, and the maximum difference in the reduced scattering coefficients is 128% between 635 and 980 nm, and the minimum difference is 1.15% between 890 and 980 nm. The maximum optical penetration depth for tissue samples is 3.57 mm at 808 nm, and the minimum optical penetration depth is 1.43 mm at 980 nm. The maximum diffusion constant for tissue samples is 0.608 mm at 890 nm, and the minimum diffusion constant is 0.278 mm at 635 nm. The maximum diffuse reflectance is 3.57 mm<sup>-1 </sup>at 808 nm, and the minimum diffuse reflectance is 1.43 mm<sup>-1 </sup>at 980 nm. The maximum shift Δx of diffuse reflectance is 1.11 mm<sup>-1 </sup>at 890 nm, and the minimum shift Δx of diffuse reflectance is 0.507 mm<sup>-1 </sup>at 635 nm.</p> <p>Conclusion</p> <p>The absorption coefficients, the reduced scattering coefficients, the optical penetration depths, the diffusion coefficients, the diffuse reflectance and the shifts of diffuse reflectance of tissue samples at 635, 730, 808, 890 and 980 nm wavelengths vary with a change of wavelength. There were significant differences in the optical properties for tissue samples at five different wavelengths (<it>P </it>< 0.01).</p

    Products of Criegee intermediate reactions with NO2::experimental measurements and tropospheric implications

    Get PDF
    The reactions of Criegee intermediates with NO2 have been proposed as a potentially significant source of the important nighttime oxidant NO3, particularly in urban environments where concentrations of ozone, alkenes and NOx are high. However, previous efforts to characterize the yield of NO3 from these reactions have been inconclusive, with many studies failing to detect NO3. In the present work, the reactions of formaldehyde oxide (CH2OO) and acetaldehyde oxide (CH3CHOO) with NO2 are revisited to further explore the product formation over a pressure range of 4–40 Torr. NO3 is not observed; however, temporally resolved and [NO2]-dependent signal is observed at the mass of the Criegee–NO2 adduct for both formaldehyde- and acetaldehyde-oxide systems, and the structure of this adduct is explored through ab initio calculations. The atmospheric implications of the title reaction are investigated through global modelling.</p
    corecore