71 research outputs found
Spectral properties of the planar t-J model
The single-particle spectral functions and self-energies
are calculated within the model using the
finite-temperature Lanczos method for small systems. A remarkable asymmetry
between the electron and hole part is found. The hole (photoemission) spectra
are overdamped, with in a wide energy range,
consistent with the marginal Fermi liquid scenario, and in good agreement with
experiments on cuprates. In contrast, the quasiparticles in the electron part
of the spectrum show weak damping.Comment: 4 pages, RevTeX, 4 Postscript figure
Raman Response in Doped Antiferromagnets
The resonant part of the electronic Raman scattering response is
calculated within the model on a planar lattice as a function of
temperature and hole doping, using a finite-temperature diagonalization method
for small systems. Results, directly applicable to experiments on cuprates,
reveal on doping a very pronounced increase of the width of the two-magnon
Raman peak, accompanied by a decrease of the total intensity. At the same time
the peak position does not shift substantially in the underdoped regime.Comment: 11 pages revtex, 3 postscript figures. Minor corrections and changes
from previous version, to be published in Phys. Rev.
Control of the finite size corrections in exact diagonalization studies
We study the possibility of controlling the finite size corrections in exact
diagonalization studies quantitatively. We consider the one- and two
dimensional Hubbard model. We show that the finite-size corrections can be be
reduced systematically by a grand-canonical integration over boundary
conditions. We find, in general, an improvement of one order of magnitude with
respect to studies with periodic boundary conditions only. We present results
for ground-state properties of the 2D Hubbard model and an evaluation of the
specific heat for the 1D and 2D Hubbard model.Comment: Phys. Rev. B (Brief Report), in pres
Statics and dynamics of charge fluctuations in the t-J model
The equation for the charge vertex of the model is derived and
solved in leading order of an 1/N expansion, working directly in terms of
Hubbard operators. Various quantities which depend crucially on are
then calculated, such as the life time and the transport life time of electrons
due to a charge coupling to other degrees of freedom and the charge-charge
correlation function. Our results show that the static screening of charges and
the dynamics of charge fluctuations depend only weakly on and are mainly
determined by the constraint of having no double occupancies of sites.Comment: 10 latex pages, 4 figures as post-script file
Finite temperature properties of the triangular lattice t-J model, applications to NaCoO
We present a finite temperature () study of the t-J model on the
two-dimensional triangular lattice for the negative hopping , as relevant
for the electron-doped NaCoO (NCO). To understand several aspects of
this system, we study the -dependent chemical potential, specific heat,
magnetic susceptibility, and the dynamic Hall-coefficient across the entire
doping range. We show systematically, how this simplest model for strongly
correlated electrons describes a crossover as function of doping () from a
Pauli-like weakly spin-correlated metal close to the band-limit (density )
to the Curie-Weiss metallic phase () with pronounced
anti-ferromagnetic (AFM) correlations at low temperatures and Curie-Weiss type
behavior in the high-temperature regime. Upon further reduction of the doping,
a new energy scale, dominated by spin-interactions () emerges (apparent both
in specific heat and susceptibility) and we identify an effective interaction
, valid across the entire doping range. This is distinct from
Anderson's formula, as we choose here , hence the opposite sign of the
usual Nagaoka-ferromagnetic situation. This expression includes the subtle
effect of weak kinetic AFM - as encountered in the infinitely correlated
situation (). By explicit computation of the Kubo-formulae, we
address the question of practical relevance of the high-frequency expression
for the Hall coefficient . We hope to clarify some open questions
concerning the applicability of the t-J model to real experimental situations
through this study
Application of the finite-temperature Lanczos method for the evaluation of magnetocaloric properties of large magnetic molecules
We discuss the magnetocaloric properties of gadolinium containing magnetic
molecules which potentially could be used for sub-Kelvin cooling. We show that
a degeneracy of a singlet ground state could be advantageous in order to
support adiabatic processes to low temperatures and simultaneously minimize
disturbing dipolar interactions. Since the Hilbert spaces of such spin systems
assume very large dimensions we evaluate the necessary thermodynamic
observables by means of the Finite-Temperature Lanczos Method.Comment: 7 pages, 10 figures, invited for the special issue of EPJB on "New
trends in magnetism and magnetic materials
Pseudo-gap behavior in dynamical properties of high-Tc cuprates
Dynamical properties of 2D antiferromagnets with hole doping are investigated
to see the effects of short range local magnetic order on the temperature
dependence of the dynamical magnetic susceptibility. We show the pseudo-gap
like behavior of the temperature dependence of the NMR relaxation rate. We also
discuss implications of the results in relations to the observed spin gap like
behavior of low-doped copper oxide high- superconductors.Comment: 3 pages, Revtex, with 2 eps figures, to appear in J.Phys.Soc.Jpn.
Vol.67 No.
- …