23 research outputs found
Characterization and modeling of a hybrid electric vehicle lithium-ion battery pack at low temperatures
Although lithium-ion batteries have penetrated hybrid electric vehicles (HEVs) and pure electric vehicles (EVs), they suffer from significant power capability losses and reduced energy at low temperatures. To evaluate those losses and to make an efficient design, good models are required for system simulation. Subzero battery operation involves nonclassical thermal behavior. Consequently, simple electrical models are not sufficient to predict bad performance or damage to systems involving batteries at subzero temperatures. This paper presents the development of an electrical and thermal model of an HEV lithium-ion battery pack. This model has been developed with MATLAB/Simulink to investigate the output characteristics of lithium-ion batteries over the selected operating range of currents and battery capacities. In addition, a thermal modeling method has been developed for this model so that it can predict the battery core and crust temperature by including the effect of internal resistance. First, various discharge tests on one cell are carried out, and then, cell's parameters and thermal characteristics are obtained. The single-cell model proposed is shown to be accurate by analyzing the simulation data and test results. Next, real working conditions tests are performed, and simulation calculations on one cell are presented. In the end, the simulation results of a battery pack under HEV driving cycle conditions show that the characteristics of the proposed model allow a good comparison with data from an actual lithium-ion battery pack used in an HEV. © 2015 IEEE
Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation
Lithium-ion (Li-ion) batteries widely used in electric vehicles (EVs) and hybrid EVs (HEVs) are insufficient for vehicle use after they have degraded to 70% to 80% of their original capacity. Battery lifespan is a large consideration when designing battery packs for EVs/HEVs. Aging mechanisms, such as metal dissolution, growth of the passivated surface film layer on the electrodes, and loss of both recyclable lithium ions, affect the longevity of the Li-ion battery at higherature operations. Even vehicle maneuvers at low temperatures (T<0°C)contribute to battery lifetime degradation, owing to the anode electrode vulnerability to other degradation mechanisms such as lithium plating. Nowadays, only a few battery thermal management schemes have properly considered lowerature degradation. This is due to the lack of studies on aging of Li-ion batteries at sub-zero temperature. This paper investigates how load cycle and calendar life properties affect the lifetime and aging processes of Li-ion cells at low temperatures. Accelerated aging tests were used to determine the effect of the ambient temperature on the performance of three 100-Ah LiFeMnP04 Li-ion cells. Two of them were aged through a normalized driving cycle at two temperature tests (-20°C and 25°C). The calendar test was carried out on one single battery at -20 °C and mid-range of state of charge (50%). Their capacities were continuously measured every two or three days. An aging model is developed and added to a preliminary single-cell electrothermal model to establish, in future works, a thermal strategy capable of predicting how the cell ages. This aging model was then validated by comparing its predictions with the aging data obtained from a cycling test at 0 °C. © 1967-2012 IEEE
Comparison of two levels of cell models for an EV current cycle
International audienceThis paper studies the effect of the granularity of acell model on the voltage accuracy. A multi-coupled cell modelwith varying parameters is compared with a simpler one(varying voltage source and equivalent series resistance). Thefirst model implies a very long and complex characterizationprocess. The second one is very simple. Experiments areperformed at different temperatures by applying a currentprofile corresponding to a driving cycle of an electric vehicle.Experimental results show both models can be used for 25°Cand 10 °C ambient temperatures with reasonable accuracy.Nevertheless, when the temperature is cold the multi-coupledmodel is more accurate
Low temperature aging tests for lithium-ion batteries
International audienc
Reliable Energy Management Optimization in Consideration of Battery Deterioration for Plug-in Intelligent Hybrid Vehicle
International audienc